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a b s t r a c t

The Least Mean Square (LMS) algorithm inherits slow convergence due to its dependency
on the eigenvalue spread of the input correlation matrix. In this work, we resolve this
problem by developing a novel variant of the LMS algorithms based on the q-derivative
concept. The q-gradient is an extension of the classical gradient vector based on the
concept of Jackson's derivative. Here, we propose to minimize the LMS cost function by
employing the concept of q-derivative instead of the convent ional derivative. Thanks to
the fact that the q-derivative takes larger steps in the search direction as it evaluates the
secant of the cost function rather than the tangent (as in the case of a conventional
derivative), we show that the q-derivative gives faster convergence for q41 when
compared to the conventional derivative. Then, we present a thorough investigation of
the convergence behavior of the proposed q-LMS algorithm and carry out different
analyses to assess its performance. Consequently, new explicit closed-form expressions for
the mean-square-error (MSE) behavior are derived. Simulation results are presented to
corroborate our theoretical findings.

& 2014 Published by Elsevier B.V.
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1. Introduction

The concept of adaptive filtering constitutes an impor-
tant part in statistical signal processing. Whenever there is
a requirement to process signals that result from unknown
statistics of an environment, the use of an adaptive filter
offers an attractive solution to the problem. Thus, adaptive
filters are successfully applied in such diverse fields as
equalization, noise cancelation, linear prediction, and in
system identification [1,2]. The most widely used algo-
rithm for adaptive filters is the Least Mean Squares (LMS)
algorithm [3]. The conventional LMS algorithm is derived
using the concept of the steepest descent approach with
79
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the aid of conventional gradient1 whose weight update
can be formulated as [1]

wiþ1 ¼wi�
μ
2
∇wJ wð Þ; ð1Þ

where JðwÞ ¼ E½e2i � for the well known LMS algorithm [1,2]
and ei is the estimation error between the desired
response, di, and its estimate, uT

i wi, produced by an
adaptive filter for an input ui at time instant i, that is,

ei ¼ di�uT
i wi: ð2Þ

Since the LMS algorithm belongs to the class of stochastic
gradient type adaptive algorithms, it inherits their low com-
putational complexity and their slow convergence, especially
81
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1 For a function f ðxÞ of a real valued vector x¼ ½x1 ;…; xM �T , the
gradient is defined as ∇xf ðxÞ9 ½∂f =∂x1 ;…; ∂f =∂xM �T .
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when operating on highly correlated signals like speech. One
approach to overcome the slow convergence problem of the
LMS algorithm is by employing a time varying step size in the
standard LMS algorithm [4–9]. This is based on using a large
step size when the algorithm is far from the optimal solution,
thus speeding up the convergence rate, and when the
algorithm is near the optimum, a small step size is used to
achieve a low level of misadjustment, thus achieving a better
overall performance. This can be obtained by adjusting the
step size in accordance to some criterion. Several criteria have
been used, such as squared instantaneous error [4], sign
changes of successive samples of the gradient [5], cross
correlation of input and error [6], gradient of squared error
cost function [7], and square of the time averaged estimate of
the correlation of the error [8], just to name a few. The second
approach to improve the convergence speed is to use a
normalization in the weight update of the LMS or the Least
Mean Fourth (LMF) algorithms, such as used in the normal-
ized LMS (NLMS) algorithm [10] and in the variable XE-NLMF
algorithm [11]. Unlike the previous two approaches, a third
approach relies on adding a proper constraint to the cost
function of the LMS or LMF algorithms [12–15]. Or, more
recently, the kernel-based non-linear kernel LMS variants
such as the Kernel LMS algorithm for real-valued input [16],
the Complex Kernel LMS (CKLMS) algorithm [17] and a
modified CKLMS based on modified Wirtinger's Calculus [18]
have also been investigated. All these variants of the LMS
algorithm improve convergence speed and/or reduce the
mean-square-error at the expense of an increase in the
computational complexity. In order to improve more the
convergence performance of the conventional LMS algorithm
while retaining its simplicity, here we propose to utilize a
novel concept based on the q-calculus which is introduced in
the ensuing section, and eventually yield the q-LMS algorithm.
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1.1. Overview of the q-calculus and the q-gradient

In the last few decades, the q-calculus has gained a lot
of interest in various fields of science, mathematics,
physics, quantum theory, statistical mechanics, and signal
processing [19]. Jackson introduced the concepts of the q-
derivative [20] (well known as Jackson's derivative) and
the q-integral [21]. The q-derivative of a function f(x) with
respect to variable x, denoted by Dq;xf ðxÞ, is defined as [22]

Dq;xf xð Þ9
f ðqxÞ� f ðxÞ

qx� x if xa0;
df ð0Þ
dx ; x¼ 0;

8<
: ð3Þ

where q is a real positive number different from 1. In the
limiting case of q-1, the q-derivative reduces to the
classical derivative. Thus, as an example, the q-derivative
of a function of the form xn is

Dq;xxn ¼
qn �1
q�1 x

n�1 if qa1;

nxn�1 if q¼ 1:

(
ð4Þ

Extending this idea to the q-gradient of a function f ðxÞ of n
variables, where x¼ ½x1; x2;…; xn�T , the q-gradient in this
Please cite this article as: U.M. Al-Saggaf, et al., The q-Least Me
doi.org/10.1016/j.sigpro.2014.11.016i
case is defined as

∇q;xf ðxÞ9 ½Dq1 ;x1 f ðxÞ;Dq2 ;x2 f ðxÞ;…;Dqn ;xn f ðxÞ�T ; for qa1;

ð5Þ

where q¼ ½q1; q2;…; qn�T .
Using the concept of q-gradient, it is shown in [23] that

the use of the negative of the q-gradient of the objective
function as the search direction for unconstrained global
optimization gives better results than the one obtained by
the conventional gradient. This motivates us to investigate
the q-gradient-based adaptive algorithms.
1.2. Paper contributions and organization

The main contributions of the paper are as follows:
(1)
an S
In this work, we introduce a new class of adaptive
filtering based on q-calculus. More specifically, we
derive a novel variant of the LMS algorithm by repla-
cing the conventional gradient in (1) by the q-gradient
which we named as q-LMS algorithm.
(2)
 We provide a geometrical interpretation of the
q-gradient to justify the proposed design. This also
offers us a better understanding that how the q-
gradient can improve the convergence speed of an
adaptive filter.
(3)
 We show an interesting attribute of the q-gradient based
LMS algorithm that it canwhiten the colored input of the
adaptive filter by employing proper selection of its q-
parameters. Consequently, it improves the convergence
speed of the algorithm.
(4)
 We carry out a thorough analytical investigation of the
proposed algorithm by studying both its transient and
steady-state convergence behaviors. Consequently, both
the MSE and MSD learning curves are evaluated and
expressions for the steady-state EMSE and the MSD are
derived.
(5)
 We also develop an efficient mechanism to make the q
parameter time varying such that variable q-LMS
algorithm should give a faster convergence while
attaining a lower steady-state EMSE.
(6)
 We perform extensive simulations to show the super-
iority of the q-LMS algorithms over the conventional
LMS and the NLMS algorithms and to validate the
analytical results.
The paper is organized as follows. Following this intro-
duction, the q-steepest descent algorithm is developed in
Section 2. A geometrical interpretation of the q-gradient is
presented in Section 3. Section 4 introduces the proposed q-
LMS algorithm. In Section 5, whitening property of the q-LMS
algorithm is investigated. A thorough performance analysis is
carried out for the developed q-LMS algorithm in Section 6. In
Section 7, an efficient time varying q-LMS algorithm is
designed. While the simulation results are presented in
Section 8, Section 9 summarizes this work.
quares algorithm, Signal Processing (2014), http://dx.
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2. The q-steepest descent algorithm

In this section, we design a new class of steepest descent
algorithm by replacing the conventional gradient in (1) with
the q-gradient and calling it q-steepest descent algorithm. To
set up the stage for derivation, consider a system identification
scenario in which the desired response di is generated as

di ¼ uT
i woþηi; ð6Þ

where ηi is a zero mean i.i.d. noise sequence with variance σ2
η

and wo is the unknown system to be identified. Given a
sequence of desired response fdig and a sequence of input
regressor vectors fuig, an adaptive filter generates a weight
vector wi at each instant so that uT

i wi is a good estimate of di
by minimizing the cost function JðwÞ ¼ E½e2i �. To design the
weight update of an adaptive filter according to Steepest
Descent criteria, we replace the conventional gradient by the
q-gradient in (1), that is,

wiþ1 ¼wi�
μ
2
∇q;wJ wð Þ: ð7Þ

Now, by employing the q-gradient's definition provided in (5)
with the aid of q-derivative rule given in (4), the ∇q;wJðwÞ is
evaluated to be

∇q;wJðwÞ ¼ �2E Guiei½ �; ð8Þ
where G is a diagonal matrix whose lth diagonal entry is
gl ¼ ðqlþ1Þ=2, that is,
diag Gð Þ ¼ ½g1; g2;…; gM�T

¼ ðq1þ1Þ
2

;
ðq2þ1Þ

2
;…;

ðqMþ1Þ
2

� �T
: ð9Þ

Substituting the value of ei in (8) results in the weight update
rule of q-steepest descent algorithm which is governed by

wiþ1 ¼wiþμG rdu�Ruwi½ �; ð10Þ
where Ru is the input auto-correlation matrix and rdu is the
cross correlation vector between desired response di and
input vector ui. The adaptive rule of the q-steepest descent
algorithm obtained in (10) is analogous to the conventional
steepest descent algorithm except the diagonal matrix G. By
analyzing (10) we conclude some important observations in
the following remarks:

Remarks.

1072

q−LMS, q=10
(1)

109

111
1.5

w
)

Error Surface (Cost Function)

Pl
do
Since the q-derivative reduces to the conventional deri-
vative for q¼1, the q-steepest descent algorithm defined
in (10) also reduces to the conventional steepest descent
algorithm with ql¼1 for all l¼ 1;2;…;M.
J(
(2)

113

115

117

0

0.5

1

It is shown in Appendix A that the optimum solution for
the q-steepest descent algorithm results is identical to the
solution provided by the conventional steepest descent
algorithm, that is, wo ¼ R�1

u rdu. Thus, the q-steepest
descent algorithm promises to attain the same optimum
solution as given by the well known Wiener–Hopf
equation.
1190 0.5 1 1.5 2 2.5 3
(3)
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w

Fig. 1. Geometrical interpretation of the q-gradient. (For interpretation of
the references to color in this figure caption, the reader is referred to the
web version of this paper.) Q4
Comparing the q-steepest descent algorithm in (10) with
its conventional counterpart, it can be noticed that the q-
steepest descent algorithm has an extra multiplying
matrix G. In order to see how this can enhance the
convergence speed of the algorithm, in the ensuing
ease cite this article as: U.M. Al-Saggaf, et al., The q-Least Mean S
i.org/10.1016/j.sigpro.2014.11.016i
section we provide some inference from a geometrical
interpretation of the q-gradient-based adaptive algorithm.
3. Geometrical interpretation of the q-gradient based
adaptive filtering

To see how the q-gradient is beneficial for improving
the convergence speed of an adaptive algorithm, we
investigate the transient change in the q-gradient over
the error surface of its cost function JðwÞ ¼ E½e2i �. To set up
the stage, we formulate the cost function in terms of the
weight vectorw by substituting the expressions of ei and di
from (2) and (6), respectively, which results in

JðwiÞ ¼ Jminþ wi�woð ÞTRu wi�woð Þ; ð11Þ
where Jmin ¼ σ2

η . Now, consider the scenario of a single tap
filter, that is, wi ¼wi, wo ¼wo, and Ru ¼ λ. Thus, the above
expression for the cost function can be set up as

JðwiÞ ¼ σ2
ηþ wi�woð Þ2λ; ð12Þ

which is a quadratic function in wi. Similarly, the q-gradient
in (8) can be simplified using the Wiener solution
(wo ¼ R�1

u rdu) for this single tap filter as

∇q;wJðwÞ ¼ �ðqþ1Þλðwo�wiÞ: ð13Þ
Next, to investigate the behavior of the above gradient

along for the cost function (12), we assume that wo¼1.5
and σ2

η ¼ 0:01 and we initialize wi with 0.01. We first
simulate the cost function given in (12) by varying wi in
the range [0, 3] as shown in Fig. 1. It can be observed that
the cost function is convex and has a parabolic shape (as
expected from (12)). Then, we plot the q-gradient given in
(13) for three values of q which are 10, 3 and 1 (which
corresponds to the conventional gradient) for three itera-
tions (i.e., i¼ 1;2;3). As depicted from Fig. 1, the q-gradient
for q¼10 (black colored triangles) gives a larger change
when compared to the ones obtained by q¼3 (red colored
star) and q¼1 (green colored circle). It can be noticed from
the definition of q-derivative in (3) that this definition is
quares algorithm, Signal Processing (2014), http://dx.
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2 Eigenvalue spread is the ratio of maximum eigenvalue to the
minimum eigenvalue of the correlation matrix, i.e., eigenvalue
spread¼λmax=λmin:

3 The time constant τl of a mean weight error tap vl(i) defines the
number of iterations required for its magnitude to reduce by 1/e of its
initial value vlð0Þ.
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the expression for a secant when qa1 and it reduces to a
tangent for q¼1. Knowing the fact that a tangent evaluates
the rate of change of a function at a single point when
compared to a secant which evaluates the slope of the line
joining two points, we can easily infer that the tangent
gives a smaller change to the function value compared to
the one obtained via a secant. Thus, the q-gradient for
q¼10 takes larger steps when compared to the ones
obtained by q¼3 and q¼1.

4. The q-Least Mean Squares algorithm

In this section, we derive the q-Least Mean Squares
(q-LMS) algorithm. Dropping the expectation from the
q-gradient in (8) and using its instantaneous value will
result in

∇q;wJðwÞ � �2Guiei: ð14Þ
Consequently, substituting (14) in (7) results in the q-LMS
algorithm:

wiþ1 ¼wiþμGuiei: ð15Þ
For the sake of completeness, by contrasting the above
with the standard LMS algorithm, it can be deduced that
the q-LMS algorithm has an extra degree of freedom to
control its performance via the diagonal matrix G which
comprises q-dependent entries (see (9) for its definition).
Ultimately, the weight update rule in (15) can be set up as

wiþ1 ¼wiþμu iei; ð16Þ
where u i ¼Gui.

Now, observing (16), the q-LMS algorithm can be
alternately treated as the LMS algorithm with a trans-
formed input vector u i ¼ uið1Þðq1þ1Þ=2;uið2Þðq2þ

�
1Þ=2;

…;uiðMÞðqMþ1Þ=2�T . Hence, the role of the q parameters
in ui can be thought as to transform the given input
vector in such a direction that can enhance the perfor-
mance of the proposed algorithm. For example, one
interesting feature of the q-LMS algorithm is to increase
the convergence speed by a proper selection of the q
parameters. Another example is the whitening process,
that is, how the q-LMS algorithm can be used to whiten
a colored input. This issue is discussed next.

4.1. Computational complexity of the q-LMS algorithm

One of the important parameters to contrast the
performance of an adaptive algorithms is their computa-
tional complexity. Since we are employing the q derivative
to improve the performance of the conventional LMS
algorithm, we compared the computational complexity
of the proposed q-LMS algorithm with that of the conven-
tional LMS algorithm. To do so, we first reformulate the
weight update rule of the q-LMS algorithm:

wiþ1 ¼wiþμv � uiei: ð17Þ
where � represents the element by element multiplica-
tion. Hence, at this stage we can easily contrast the
computational complexity of the two algorithms. Specifi-
cally, for the real valued data, the conventional LMS
algorithm requires 2Mþ1 real multiplications and 2M real
Please cite this article as: U.M. Al-Saggaf, et al., The q-Least Me
doi.org/10.1016/j.sigpro.2014.11.016i
additions per iteration whereas the q-LMS algorithm needs
3Mþ1 real multiplications and 2M real additions per
iteration. Thus, the q-LMS algorithm requires only M
number of multiplications more than the conventional
LMS per iteration which does not increase the complexity
much as compared to the performance improvement.

5. The q-gradient based LMS algorithm as a whitening
filter

It is well known that the conventional LMS algorithm
depends on the input correlation matrix, and therefore its
convergence speed is limited by the eigenvalue spread2 of
the input correlation matrix. More specifically, the overall
time constant,3 τa, of a mean weight error tap (vl(i)) of the
LMS algorithm is bounded by [2]

�1
ln 1�μλmax
� �rτar

1
ln 1�μλmin
� � ð18Þ

where lnð Þ represents the natural logarithm, and λmax and
λmin are the maximum and minimum eigenvalues of the
input correlation matrix, respectively.

Motivated by the above observation, we found an
interesting application of the q-gradient. Specifically, we
can increase the convergence speed of the LMS algorithm,
by selecting the q parameter in such a way that makes the
LMS filter acts as a whitening filter. To see this effect, the
transient behavior of the lth element of the weight error
vector of the q-LMS given in (58) is investigated. It can be
observed that the time constant associated with the lth
mean weight error tap (vl(i)) is given by

τl ¼
�1

ln 1�μðqlþ1Þλl
2

� �; 1r lrM: ð19Þ

Thus, if we select the ql parameter such that

ðqlþ1Þ
2

¼ 1
λl
; or ql ¼

2�λl
λl

; 1r lrM; ð20Þ

which modifies the time constant τl to

τl ¼
�1

ln 1�μ
� �; 1r lrM; ð21Þ

then, the time constant of tap weight becomes indepen-
dent of the input correlation matrix, and hence this will
remove the restriction on the overall time constant
defined in (18). Eventually, this will increase the conver-
gence speed of the proposed adaptive algorithm. In other
words, this will have a similar effect as the normalized
LMS (NLMS) algorithm [10] had on the LMS algorithm.
Now, with this choice of the q parameter, the condition for
mean stability can be shown to be governed by

0oμo2; ð22Þ
an Squares algorithm, Signal Processing (2014), http://dx.
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which is identical to that of the NLMS algorithm [10].

6. Performance analyses of the q-LMS algorithm

In this section, we carry out the mean and mean-square
performance analyses of the q-LMS algorithm by defining
the weight error vector as ~w i ¼wo�wi which allows us to
set up the weight error recursion for the q-LMS algorithm
given in (15) as

~w iþ1 ¼ ~w i�μGuiei: ð23Þ
Next, by using the expression for the desired response
given in (6), we can rewrite the expression for ei in (2) as

ei ¼ uT
i ~w iþηi: ð24Þ

To proceed for the mean and mean square analyses of the
weight error vector of the q-LMS algorithm, we set up the
stage by putting the following assumptions in order:
81

A1
83

Pl
do
The noise ηi is zero mean Gaussian with zero odd
moments and with variance σ2

η. Also, the noise ηi is
independent of the input signal ui.
85
A2
 The sequence of vectors ui is i.i.d.

A3
87

For the sake of mean-square analysis, we assume the
autocorrelation matrix of the input regressor ui to be
diagonal, that is, Ru ¼Λ¼ diagðλ1; λ2;…; λMÞ.
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The above assumptions are well known in the literature
and are commonly used [1,2]. In the ensuing, the above
assumptions are used to evaluate the mean and mean-
square performance of the q-LMS algorithm.

6.1. Mean behavior

After substituting the value of ei defined by (24) in (23),
we can reformulate (23) as

~w iþ1 ¼ ~w i�μGui uT
i ~w iþηi

� �
: ð25Þ

Next taking the expectation of both sides of (25), under A1
and A2, the mean value of the weight-error vector the
q-LMS algorithm can be shown to be governed by the
following recursion:

E ~w iþ1
� 	¼ I�μ

2
A


 �
E ~w i½ �; ð26Þ

where matrix A is defined as

A¼ 2GE uiuT
i

� 	
¼ 2GRu: ð27Þ

Thus, the weight error vector converges in the mean
provided that the step-size μ of the q-LMS algorithm must
satisfy the bound given in (28) which after rearranging the
terms can be set up as (the transient behavior of E½ ~w i� is
detailed in Appendix B)

0oμo 4
maxfðq1þ1Þλ1;…; ðqMþ1ÞλMg

: ð28Þ

In the case when all qi's are equal (say equal to q), then
(28) reduces to

0oμo 4
ðqþ1Þλmax

; ð29Þ
ease cite this article as: U.M. Al-Saggaf, et al., The q-Least Me
i.org/10.1016/j.sigpro.2014.11.016i
and then it is very easy to see that (29) collapses to that of
the LMS algorithm when q¼1, that is,

0oμo 2
λmax

: ð30Þ

From (28) and (29), it can be seen that the q-LMS
algorithm is dependent on the energy of the input signal,
as was in the case of the LMS algorithm. Therefore, unlike
a colored signal, a white input signal would result in a
better performance. To remedy this situation, either a
normalized version of this algorithm can be employed or
an appropriate selection of q parameters can be used. The
later solution was already elaborated in Section 5.
6.2. Mean square behavior

Here, we are interested in studying the time-evolution
and the steady-state values of E½jj ~w ijj2λ� and E½jj ~w ijj2� of the
q-LMS algorithmwhich represent the excess mean-square-
error (EMSE) and the mean-square-deviation (MSD) per-
formances of the filter, respectively, whereas their time
evolution relate to the learning or the transient behavior of
the filter. To derive these performance measures, we set up
the stage by defining error measures and the fundamental
weighted energy relation for the q-LMS algorithm in the
ensuing sections.
6.2.1. Error measures and fundamental weighted-energy
relation

For some symmetric positive definite weighting matrix
Σ to be specified later, the weighted a priori and a
posteriori estimation errors are, respectively, defined as [1]

eΣai9uT
i Σ ~w i; and eΣpi9uT

i Σ ~w iþ1: ð31Þ

For the special case when Σ¼ I (I is the identity matrix),
the weighted a priori and a posteriori estimation errors
defined above are reduced to standard a priori and a
posteriori estimation errors, respectively, that is,

eai ¼ eIai ¼ uT
i ~w i; and epi ¼ eIpi ¼ uT

i ~w iþ1: ð32Þ

Observing (24), it can be seen that the estimation error, ei, and
the a priori error, eai, are related via ei ¼ eaiþηi. Thus, by
employing the opted assumptions, it can be shown that
E½e2i � ¼ E½‖ ~w i‖2λ�þσ2

η. Thus, the term E½‖ ~w i‖2λ� gives the EMSE.
To perform the mean-square analysis of the q-LMS

algorithm, we develop the fundamental weighted-energy
relation using the methodology outlined in [1]. As a result,
the fundamental weighted-energy relation for q-LMS algo-
rithm is found to be (the proof is provided in Appendix C)

E½‖ ~w iþ1‖2σ � ¼ E½‖ ~w i‖2Fσ �þμ2σ2
ηλ

TG2σ; ð33Þ

where λ¼ diagðΛÞ is a column vector containing diagonal
entries of Λ and σ is an M � 1 parameter weight vector
that can provide different performance measures by
choosing its appropriate value as will be shown in the
next section. The matrix F is given by

F¼ I�μAþμ2B; ð34Þ
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where

B¼ 2G2Λ2þλλTG2: ð35Þ

6.2.2. Learning curves for the EMSE and the MSD of the
q-LMS algorithm

Now, we deduce the EMSE and the MSD learning
curves of the proposed algorithm by selecting the proper
choice of σ defined in (33). Starting with an initial value of
weight vector w�1 equal to zero vector (consequently
~w �1 ¼wo), we can obtain the EMSE learning curve by
setting σ equal to λ in (33) and is found to be

EMSEðiÞ ¼ E½‖ ~w i‖2λ�
¼ E½‖wo‖2

Fiλ�þμ2σ2
ηE ‖ui‖2ðIþFþ⋯þFi� 1ÞG2λ

h i
¼ E½‖wo‖2

Fiλ�þμ2σ2
ηλ

T ðIþFþ⋯þFi�1ÞG2λ: ð36Þ

whereas the MSD learning curve is obtained by setting σ
equal to 1 in (33) and it is given by4

MSDðiÞ ¼ E½‖ ~w i‖21�
¼ E½‖wo‖2

Fi1
�þμ2σ2

ηλ
T ðIþFþ⋯þFi�1ÞG21: ð37Þ

6.2.3. Mean square stability
Following the strategy outlined in [1], we can prove

that the mean square stability of the q-LMS algorithm is
conditioned by the following bound:

0oμo 1

λmaxðA�1BÞ
; ð38Þ

where A and B are defined in (27) and (35), respectively.

6.2.4. Steady-state performance
In this section, we evaluate the steady state perfor-

mance of the proposed algorithm by analyzing (33) as
i-1 and consequently derive expressions for the steady-
state EMSE and MSD. As i-1 the terms E½‖ ~w i‖2σ � and
E½‖ ~w i�1‖2Fσ � can be combined as E½‖ ~w1‖2ðI�FÞσ � to obtain

E½‖ ~w1‖2ðI�FÞσ � ¼ μ2σ2
ηλ

TG2σ: ð39Þ

When σ ¼ ðI�FÞ�1λ, the steady state EMSE for the above
equation is derived to look like

EMSE¼ μ2σ2
ηλ

TG2ðI�FÞ�1λ: ð40Þ

Similarly, setting σ ¼ 1 in (39), the steady-state MSD of the
proposed algorithm is found to be

MSD¼ μ2σ2
ηλ

TG2ðI�FÞ�11: ð41Þ

To get more insight, the matrix inversion lemma [2] for the
term ðI�FÞ�1 is used to obtain

ðI�FÞ�1 ¼ 2μΛG�2μ2G2Λ2þμ2λλTG2

 ��1

¼ 2μΛG�1�2μ2Λ2þμ2λλT

 ��1

G�2
4 1 is an M-dimensional vector with all entries equal to 1.
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¼ ð2μΛG�1�2μ2Λ2Þ�1G�2

1�μ2λT ð2μΛG�1�2μ2Λ2Þ�1λ
: ð42Þ

As a result, the EMSE and the MSD simplify, respectively, to

EMSE¼ μ2σ2
η
λTG2ð2μΛG�1�2μ2Λ2Þ�1G�2λ
1�μ2λT ð2μΛG�1�2μ2Λ2Þ�1λ

¼
μσ2

η∑M
l ¼ 1

λlgl
2ð1�μλlÞ

1�μ∑M
l ¼ 1

λlgl
2ð1�μλlÞ

; ð43Þ

and

MSD¼ μ2σ2
η
λTG2ð2μΛG�1�2μ2Λ2Þ�1G�21

1�μ2λT ð2μΛG�1�2μ2Λ2Þ�1λ

¼
μσ2

η∑M
l ¼ 1

gl
2ð1�μλlÞ

1�μ∑M
l ¼ 1

λlgl
2ð1�μλlÞ

: ð44Þ

Remarks.
(1)
an S
Expressions (43) and (44) result in a more restrictive
range for the step size μ when μo1=λl for all
1r lrM, that is

0oμo 2
∑M

l ¼ 1λlgl
: ð45Þ

Moreover, for the case of gl ¼ 1; 8 l (which corre-
sponds to the standard LMS case), the above range of
the step-size simplifies to

0oμo 2
∑M

l ¼ 1λl
: ð46Þ
(2)
 It can be noticed that one can recover the steady-state
EMSE and MSD of the conventional LMS algorithm by
substituting ql¼1 for all 1r lrM or equivalently by
setting G¼ I in (40) and (41), respectively.
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7. An efficient q-LMS algorithm with time varying q
parameter

We have seen in Sections 3 and 4 that how the q-gradient
with q41 improves the convergence speed of the adaptive
filter. On the other hand, we notice that the performance of
the q-LMS algorithm degrades when q41 as dictated by the
expressions of the EMSE and MSD defined given in (43) and
(44), respectively. In other words, the larger the value of the
q parameter, the faster the convergence of the algorithm at
the expense of a degradation in the steady-state perfor-
mance. This motivates us to design a q-LMS algorithmwith a
time varying q parameter such that the q parameter attains
initially larger value (that is, greater than 1) and reduces to 1
near steady-state. Eventually, this technique will promise
both a faster convergence and a lower steady-state value. A
similar approach was carried out in [9]. Thus, we propose the
following time varying rule for the q parameter:

ψ iþ1 ¼ βψ iþγe2i ; ð0oβo1; γ40Þ; ð47Þ
quares algorithm, Signal Processing (2014), http://dx.
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with

qiþ1 ¼
qupper if ψ iþ14qupper
1 if ψ iþ1o1
ψ iþ1 otherwise

8><
>: ð48Þ

where qupper is so chosen to satisfy the stability bound, that
is,

qupper ¼
2

μλmax
: ð49Þ

The above scheme provides an automatic adjustment of qi
according to the estimation of the square of the estimation
error. When this estimate is a large value, qi will approach its
upper bound denoted by qupper, thus providing fast adapta-
tion while its smaller value will make qi close to unity for a
lower steady-state error. Therefore, promising both a faster
convergence and a lower steady-state error for the q-LMS
algorithm.
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Remark. By comparing the update rule for the time
varying q-LMS guven in (47) and (48) with the update
rule for the variable step-size of the VSS-LMS algorithm
[4], it can be easily deduced that the computational
complexity of the time varying q-LMS is almost the same
as that of the VSS-LMS algorithm except M number of
multiplications as mentioned in Section 4.1.
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8. Simulation results

In this section, the performance analysis of the q-LMS
algorithm is investigated in a system identification sce-
nario with wo ¼ ½0:227;0:460;0:688;0:460;0:227�T . System
noise is a zero mean i.i.d. sequence with variance 0.001
which set the SNR to 30 dB. Throughout the simulation,
the adaptive filter used has the same length as that of the
unknown system. The input to the adaptive filter and
unknown system is correlated complex Gaussian input
which is generated with correlation matrix with entries
Rði; jÞ ¼ αji� jj

c with correlation factor5 αc (0oαco1). The
objectives of our simulations are as follows:
107
(1)

109

5

corr

Pl
do
To investigate the transient trajectories of the q-Gra-
dient based MSE cost function.
(2)

111
To compare the MSE performances of the q-LMS and
the conventional LMS algorithms.
(3)

113
To validate the derived analytical results for both
steady-state and transient analysis.
(4)

115
To investigate the performance of the time varying
q-LMS algorithm.
117

119
The above outlined objectives are presented in the ensuing
sub-sections.
121

123
The case αc ¼ 0 corresponds to the white case while αc ¼ 1

esponds to the fully correlated case.
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8.1. Transient trajectories of the q-Gradient based MSE cost
function

In this study, we evaluate the transient trajectories of
weight error vector and the transient behavior of the cost
function. The cost function J ¼ E½e2i � can be formulated
using weight error vector as

JðiÞ ¼ Jminþ ∑
M

l ¼ 1
λlv2l ðiÞ; ð50Þ

where Jmin is the minimum value of J evaluated at wo

which is equal to the noise variance σ2
η . Now, by substitut-

ing v2l ðiÞ from (58) in the above, we obtain

J ið Þ ¼ Jminþ ∑
M

l ¼ 1
λl 1�μðqlþ1Þλl

2

� �2i

v2l 0ð Þ: ð51Þ

For the purpose of our study, we consider the filter length
equal to 2 (i.e., M¼2) and white Gaussian noise process.
The optimum weight vector wo and the initial value of
weight error vector v0 are selected by using the approach
described in [2]. Here, we investigate two different scenar-
ios of input correlation which are discussed next.

Example 1. In this example, we choose σ2
η ¼ 0:0965, the

optimum weight vector as wo ¼ ½0:1950; �0:95�T and the
initial weight error vector v0 ¼ ½0:5339; �0:8096�T . The
eigenvalues of the input correlation matrix used are
½λ1; λ2� ¼ ½1:1; 0:9� (i.e., the eigenvalue spread¼1.22)
which corresponds to low correlated inputs. Fig. 2 shows
the rings.

Example 2. In the second example, illustrated by Fig. 3,
we choose σ2

η ¼ 0:0038, the optimum weight vector as
wo ¼ ½1:9114; �0:95�T , and the initial weight error vector
v0 ¼ ½�0:6798; �2:0233�T . The eigenvalues of the input
correlation matrix used are ½λ1; λ2� ¼ ½1:957;0:0198� (i.e.,
the eigenvalue spread¼100) which corresponds to a
highly correlated input.

8.2. Sensitivity analysis of the q-LMS algorithm

In this experiment, we analyze the sensitivity of the q-LMS
algorithm with respect to the parameter q. To do so, we
choose a system identification problem in which the un-
known system to be identified is wo ¼ ½0:227; 0:460; 0:688;
0:460; 0:227�T . In this context, we compare the MSE learning
curves of the q-LMS algorithm for different fixed values of q
and compared it with the one obtained via the conventional
LMS algorithm in Fig. 4. The results are averaged over 500
independent runs. For a fair comparison, we set the equal
step-size values which is equal to μLMS ¼ μq�LMS ¼ 0:08. For
the q-LMS algorithm, we investigated four fixed values of q
which are q¼0.0001, q¼1, q¼2, and q¼3. It can be depicted
from the figure that the result for the case q¼1 exactly
coincides with that of the conventional LMS algorithm which
validates that q¼1 corresponds to standard LMS case. More-
over, it can be seen from the reported results that the q-LMS
algorithm exhibits faster convergence and a large steady-state
MSE for larger q while slower convergence and smaller
steady-state MSE for smaller q. This shows that the steady-
state MSE of the q-LMS algorithm is a monotonically
an Squares algorithm, Signal Processing (2014), http://dx.
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increasing function of q. This behavior can be explained with
the help of q-gradient's concept. As the q-gradient computes
the secant of a function for a q value greater than 1, which
corresponds to taking larger steps towards minima, and
therefore results in a faster convergence and vice versa. For
the case of q¼1, the two MSE learning curves coincide as
expected because the q-gradient transforms to the ordinary
gradient at q¼1.
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8.3. Whitening behavior of the q-LMS algorithm

In this section, we explore the whitening behavior of the
q-LMS algorithmwith a proper selection of the q values. Thus,
by setting the q values according to (20) or equivalently by
setting G¼Λ�1, the q-LMS algorithm cancels the effect of the
input correlation or in other words it whitens the input (see
Section 5 for details). In Fig. 5, the MSE learning curve of the
q-LMS algorithm G¼Λ�1 is compared to that of the conven-
tional LMS and the NLMS algorithms. The inputs to the
adaptive filters are correlated with an eigenvalue spread of
100. It can be easily seen from the results that the q-LMS
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Fig. 5. MSE behavior of the whitening q-LMS, the conventional LMS and
the NLMS algorithms.
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correlation.
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algorithm outperforms both the NLMS and the conventional
LMS algorithms. The reason is that the choice of q parameters,
according to (20), makes the convergence of q-LMS algorithm
completely independent from the input correlation as
explained in Section 5. This fact is further supported by the
results in Fig. 6. Here, the q-LMS algorithm with whitening q
selection is simulated for two extreme values of the correla-
tion factor (αc), that is, for αc ¼ 0:99 and αc ¼ 0:1 which
correspond to eigenvalue spreads of 885 and 1.41, respectively.
There is a clear demonstration in the reported results that the
convergence of the q-LMS algorithm with the whitening q
selection is insensitive to the input correlation.
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Fig. 8. Steady-state EMSE of the q-LMS for G¼Λ�1 and G¼ I.
8.4. Validating the derived analytical results for the q-LMS
algorithm

In this section, we compared the simulation results
with the derived analytical ones in order to validate our
theoretical findings. For that, we investigated both the
steady-state and the transient performance of the q-LMS
algorithm. In the first experiment reported in Fig. 7, we
compared the simulation MSE learning curves of the
q-LMS for whitening q with the analytical one obtained
from the derived expression in (36) for two values of step-
size value which are 0.1 and 0.01. Here, the correlation
factor is set to αc ¼ 0:5. An excellent agreement between
the theory and simulation can be observed here which
validates that our theoretical derivations are valid for both
small and large step-size scenarios. In the second experi-
ment shown in Fig. 8, we plotted the analytical values of
the steady-state EMSE derived in (40) against the step-size
values and compared it with the simulation one for two
different choices of matrix G, which are G¼Λ�1 (showing
whitening q-LMS case) and G¼ I (showing the conven-
tional LMS case). Again the results show an excellent
match between the theory and the simulations. Moreover,
it can be observed that the conventional LMS algorithm
has larger steady-state EME'S compared to the whitening
q-LMS algorithm particularly at larger values of the step-
size.
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Fig. 7. Simulation and analytical MSE behavior of the q-LMS algorithm.
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8.5. Performance of time varying q-LMS algorithm

Finally, we have investigated the performance of the time
varying q-LMS algorithm developed in Section 7. In order to
implement a time varying q-LMS algorithm, we use an
intelligent mechanism using (47) and (49) which provides
an automatic adjustment of qi according to the energy of
estimation error. We set the initial value of qi according to the
whitening criterion, that is, we choose G0 ¼Λ�1. The results
are compared with that of the conventional LMS algorithm
(with μLMS ¼ 0:05), the NLMS algorithm (with μNLMS ¼ 1),
Variable step-size LMS (VSS-LMS) algorithm [4], and Modified
Variable step-size LMS [8]. This comparison is shown in Fig. 9.
It can be seen from the figure that the time varying q-LMS
outperforms the conventional LMS by attaining many fold
faster convergence speed. This is due to the fact that by
employing the proposed mechanism, qi attains a larger value
in the initial stage of adaptation (due to larger estimation
error energy) and it decreases to a smaller value near steady-
state (due to small estimation error energy). Hence, it gives a
faster convergence in the initial transient stage and a lower
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Fig. 9. MSE behavior of the time varying q-LMS, LMS, NLMS, VSS-LMS,
and MVSS-LMS algorithms.
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6 For any column vector x, the notation ‖x‖2Σ denotes the weighted

squared Euclidean norm, i.e., ‖x‖2Σ ¼ xTΣx.
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steady-state error near final stages.

9. Conclusion

In this work, we developed a novel q-LMS algorithm using
the concept of q-gradient in contrast to the standard gradient
in the LMS algorithm. This provides an extra degree of
freedom to control the performance of the algorithm in terms
of both convergence speed and steady-state error which we
proved with the aid of exhaustive simulations. We supported
the rationale of the proposedwork with the aid of q-gradient's
geometry. One interesting feature of the proposed algorithm
is that it can act like a whitening filter with the proper choice
of the q-parameters. Mean and MSE performance analyses of
the proposed algorithm are also carried out for both the
transient and the steady-state scenarios. We also developed a
variable q-LMS algorithm which gives a faster convergence
while attaining a lower steady-state EMSE. We hope that our
work has opened a new door in the area of adaptive filtering
as a number of existing adaptive algorithms can be investi-
gated in a new paradigm of the q-gradient.

Acknowledgments

This work was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah, under
Grant no. (135-025-D1434). The authors, therefore, acknowl-
edge with thanks DSR technical and financial supports.

Appendix A. Optimum solution for the q-steepest descent
algorithm

The optimum solution for the q-steepest descent algorithm
is derived in this Appendix. Since, the q-gradient corresponds
to a secant for q41, it becomes a tangent as the value of q
approaches unity. This is due to the fact that the q-derivative
transforms to standard derivative as q becomes unity. Hence,
the q-gradient promises to attain the minimum value of the
cost function as q-1 which implies that the slope of the
tangent approaches zero near the optimum solution. In other
words, the q-gradient, ∇q;wJðwÞ derived in (8), approaches
zero as the q approaches unity, that is,

�2E Guiei½ � � 0 as q-1:

Upon taking the expectation of the above expression, after
substituting the expression for ei, the following is obtained:

G rdu�Ruwo½ � � 0 as q-1; ð52Þ
where Ru is the input auto-correlation matrix and rdu is the
cross correlation vector between the desired response, di, and
the input vector, ui. Finally, after some simplification steps,
the optimum weight vector can be shown to be

wo � R�1
u rdu as q-1: ð53Þ

Appendix B. Mean weight error vector recursion for
q-LMS algorithm

In this Appendix, we analyze the transient behavior of
mean weight error vector of the q-LMS algorithm defined
Please cite this article as: U.M. Al-Saggaf, et al., The q-Least Me
doi.org/10.1016/j.sigpro.2014.11.016i
by (26). Now, by defining the variable vi as

vi9E½ ~w i�; ð54Þ
we can formulate the mean weight error recursion in (26) as

viþ1 ¼ I�μ
2
A


 �
vi: ð55Þ

Resorting to assumptionA3, thematrixA in (26) can be set up as

A¼ diag
ðq1þ1Þλ1

2
;…;

ðqMþ1ÞλM
2

� �
: ð56Þ

Consequently, the lth element in the weight error vector vi
(denoted by vl(i)) will take the following form:

vl iþ1ð Þ ¼ 1�μðqlþ1Þλl
2

� �
vl ið Þ; 1r lrM: ð57Þ

With an initial value vlð0Þ, the solution of the above difference
equation can be easily shown to be governed by

vl ið Þ ¼ 1�μðqlþ1Þλl
2

� �i

vl 0ð Þ; 1r lrM; ð58Þ

which is a geometric series and will converge as i-1 provided
that

1�μðqlþ1Þλl
2

����
����o1; 1r lrM: ð59Þ

Thus, the condition for the overall mean convergence of the
q-LMS algorithm can be obtained when the above bound is
satisfied for all the elements in vi which is equivalent to say

0oμmax
ðq1þ1Þλ1

2
;
ðq2þ1Þλ2

2
;…;

ðqMþ1ÞλM
2

 �
o2 ð60Þ

where the notation maxfg represents the maximum quan-
tity among the entries in fg.

Appendix C. Fundamental weighted variance relation for
the q-LMS algorithm

In this section, we derive the weighted variance relation.
This is done by first developing the fundamental weighted-
energy relation. To proceed, we multiply both sides of (23)
by uT

i ΣG to obtain

uT
i ΣG ~w iþ1 ¼ uT

i ΣG ~w i�μeiuT
i ΣG2ui: ð61Þ

Now, using the definitions in (31) and replacing Σ by ΣG,
we can rewrite the above equation as6

eΣG
pi ¼ eΣG

ai �μeijjuijj2ΣG2 : ð62Þ

Thus, by substituting Eq. (62) in Eq. (23), we obtain the
following relation:

~w iþ1 ¼ ~w i�
ðeΣG

ai �eΣG
pi Þ

‖ui‖2ΣG2

Gui: ð63Þ

Eventually, by evaluating the weighted energies of both
sides of the above (weighted by Σ), we arrive at the
fundamental weighted-energy conservation relation for
an Squares algorithm, Signal Processing (2014), http://dx.

http://dx.doi.org/10.1016/j.sigpro.2014.11.016
http://dx.doi.org/10.1016/j.sigpro.2014.11.016
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1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61
63

65

67

69

71

73

75

77

79

81

83

85
Q2

U.M. Al-Saggaf et al. / Signal Processing ] (]]]]) ]]]–]]] 11
the q-LMS algorithm:

‖ ~w iþ1‖2Σþ
ðeΣG

ai Þ2
‖ui‖2ΣG

¼ ‖ ~w i‖2Σþ
ðeΣG

pi Þ2

jjuijj2ΣG

: ð64Þ

Now, substituting the expression for the a posteriori error
from (62) in (64) and taking the expectation on both sides of
the above, with the aid of assumptions A1 and A2, to reach7

E½‖ ~w iþ1‖2Σ� ¼ E½‖ ~w i‖2Σ2
�þμ2σ2

ηE½‖ui‖2ΣG2 �; ð65Þ

where

Σ2 ¼ E½Σ2� ¼Σ�2μE½uiuT
i �ΣGþμ2E½‖ui‖2ΣG2uiuT

i �: ð66Þ

To proceed further, we use assumption A3 which allows us
to evaluate the input dependent moments appearing in (66).
This gives Σ2 a new look:

Σ2 ¼Σ�2μΣGΛþμ2 2ΣG2Λ2þTrðΣG2ΛÞΛ
h i

; ð67Þ

and the last moment appearing in (65) is found to be

E½‖ui‖2ΣG2 � ¼ TrðΛΣG2Þ: ð68Þ
Now, defining the vectors σ and σ2 comprising diagonal
entries of matrices Σ and Σ2, respectively, that is,

σ9diagðΣÞ; and σ29diagðΣ2Þ; ð69Þ
which allow us to relate σ with σ2 by the following relation:

σ2 ¼ Fσ; ð70Þ
where F is defined in (34).

Finally, using relations (69) and (70), the mean-square
performance of the q-LMS algorithm can be shown to be
governed by the recursion provided in (33).
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