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a b s t r a c t

One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules,
of the automatic tuning feature and of tables that simplify significantly their design. For the fractional
order case, some tuning rules have been proposed in the literature. However, they are not general
because they are valid only for some model cases. In this paper, a new approach is investigated. The
fractional property is not especially imposed by the controller structure but by the closed loop reference
model. The resulting controller is fractional but it has a very interesting structure for its implementation.
Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which
is generally an integer PID controller and a simple fractional filter.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The ubiquitous proportional-integral-derivative (PID) control-
ler has continued to be the most widely used process control
technique for many decades. Indeed, PID controllers are still
widely used in industrial systems despite the significant develop-
ments of recent years, in control theory and technology. This is
because they perform well for a wide class of processes. Also, they
give robust performance for a wide range of operating conditions.
Many possible approaches for determining the tuning of the
parameters on appropriate PID controllers have been given in
the literature in both time and frequency domain. The literature is
very abundant in this field; see for example [1,2].

In control system theory, there are four possible combinations
of a system and a controller. The first is the traditional integer-
order control where both the system to be controlled and the
controller are of integer-order. The second case is a fractional-
order plant model controlled by an integer-order controller. There
are very few studies that refer to this type of combination [3,4].
The third case is a fractional-order plant model controlled by a
fractional-order controller (see for example [5,6]). Nevertheless,
because the majority of systems are modeled as integer order

ones, fractional order control is mainly applied by using fractional
controllers for integer order systems. This case is the most popular
and the literature is now abundant, as detailed next.

Fractional-order proportional-integral-derivative (FOPID) con-
trollers have received a considerable attention in the last two
decades. They provide more flexibility in controller design as
compared with standard PID controllers. This is because they have
five parameters to select instead of three parameters in the
standard PID controllers. However, this flexibility also implies that
tuning of the controller can be much more complex.

The concept of FOPID controllers was proposed by Poblubny
[7]. He also demonstrated a better performance using this type
of controller as compared with PID controller when controlling
a fractional order system. A frequency domain approach using
FOPID controllers is also studied in [8]. In [9], an optimization
method is presented where the parameters of the FOPID are tuned
to satisfy predefined design specifications. Ziegler–Nichols tuning
rules for FOPID are reported in [10]. In [11,12], a FO-IP (Fractional
Order Integral Proportional) controller design using the pole
placement method is proposed. There are several other papers
published in recent years where the tuning of FOPID was inves-
tigated (see for example [13,14] and the references therein for
more information). Further research activities are being done to
develop new tuning methods and to investigate new applications
of FOPID controllers. In [15], the control of heat diffusion systems
using FOPID controllers is studied and different tuning methods
are applied. Control of an irrigation canal using FOPID controllers
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is given in [16]. FOPID controller tuned using a particle swarm
optimization algorithm is used to control an automatic voltage
regulator system [17]. The internal model control based PID (IMC-
PID) tuning method was introduced in the last years to design
FOPID controllers. This is due to the main characteristic of IMC;
simple structure and intuitive design. Nevertheless, very few
studies have been published in this area [18–21].

The dynamic model which governs the phenomenon of “frac-
tional robustness” is non-integer order linear differential equation,
and the principle of the CRONE suspension, the synthesis method
and the performance are developed for this non-integer order
model [22,23]. The research work of Oustaloup with his famous
CRONE Controllers have really popularized fractional control.
In the CRONE principle, the closed loop reference model is
(FðsÞ ¼ 1=ð1þτcsαÞ). This particular form has very important prop-
erties because its phase margin remains constant independently of
the value of the system gain. Thus, the closed loop system is robust
to process gain variations and the step response exhibits iso-
damping property. In this paper, we focus on integer order systems
controlled by fractional order controllers, but a new approach will
be investigated. The fractional property is not especially imposed
by the controller structure but by the closed loop reference model.
The controller thus obtained is necessarily fractional, but has a
very interesting structure for its implementation. Indeed, the
controller can often be decomposed in two parts. An integer PID
controller cascaded with a simple fractional order filter being
a fractional integrator (1=sα) or a first order fractional model
(1=ð1þτf sαÞ). On the other hand, during our investigations, we
ensured that the controller design method is simple to implement.

2. Preliminary

2.1. CRONE principle

In his study on the design of feedback amplifiers, Bode [24]
suggested an ideal shape of the open-loop transfer function of the
form:

LðsÞ ¼ 1
τc sα

αAR ð1Þ

where 1=τ�α
c ¼ωc is the gain crossover frequency, that is,

jLðωcÞj ¼ 1. The parameter α is the slope of the magnitude curve,
on log–log scale, and may assume integer as well as non-integer
values. In fact, the transfer function L(s) is a fractional-order
differentiator when α40 and a fractional-order integrator for
αo0. The Bode diagrams of L(s), are very simple. The amplitude
curve is a straight line of constant slope �20α dB/dec, and the
phase curve is a horizontal line at �απ=2 rad.

Let us now consider the unity feedback system represented in
Fig. 1 with Bode's ideal transfer function L(s) inserted in the
forward path. This choice of L(s) gives a closed-loop system with
the desirable property of being insensitive to gain changes. If the
gain changes, the crossover frequency ωc will vary but the phase
margin of the system remains equal to πð1�α=2Þ rad, indepen-
dently of the value of the gain.

The closed-loop system of Fig. 1 is given by

GclðsÞ ¼
CðsÞGðsÞ

1þCðsÞGðsÞ ð2Þ

and the desired closed-loop transfer function is given by

FðsÞ ¼ LðsÞ
1þLðsÞ ¼

1
1þτc sα

αARþ ð3Þ

is used as a reference model for tuning the controller C(s).
It exhibits important properties such as infinite gain margin and
constant phase margin (dependent only on α). Thus, this closed
loop system is robust to process gain variations and the step
response exhibits iso-damping property. As for this reference
system, the order α and the time constant τc determine
the overshoot (dependent on α) and the settling time (dependent
on τc), respectively [25].

Then, for the case when we have the open loop transfer
function (GOLðsÞ ¼ GðsÞCðsÞ) close to L(s), the closed loop response
of this system will also behave like the closed loop response of the
reference system F(s) giving us the important properties of the
reference system. Thus, to obtain the important properties of
the closed loop system, the controller C(s) is carried out so that
the open loop (GOLðsÞ ¼ GðsÞCðsÞ) is close to the open loop reference
model L(s). This is the CRONE principle [3,4] that all the proposed
methods of fractional controllers tuning in frequency domain try
to obtain.

2.2. Internal model control (IMC)

A more comprehensive model-based design method, internal
model control (IMC), was developed by Morari and coworkers
[26–28]. The IMC method, as the direct synthesis method usually
used in the conventional feedback control, is based on assumed
process models and leads to analytical expressions for the con-
troller settings. These two design methods are closely related and
produce identical controllers if the design parameters are specified
in a consistent manner, for several models. However, the IMC
approach has the advantage that it allows model uncertainty and
tradeoffs between performance and robustness to be considered in
a more systematic way.

The IMC paradigm is based on the simplified block diagram
as shown in Fig. 2. A process model Gm(s) and the controller
output u are used to calculate the model response ym. The model
response is subtracted from the plant response y, and the
difference y�ym, is used as the input signal to the IMC controller
CIMC(s). In general, yaym due to modeling errors (GmðsÞaGðsÞ) and
unknown disturbances da0 that are not accounted for in
the model.

The block diagram for the conventional feedback control is
given in Fig. 3. It can be shown that the two block diagrams are
identical if controllers C(s) and CIMC(s) satisfy the relation:

CðsÞ ¼ CIMC ðsÞ
1�CIMCðsÞGmðsÞ

ð4Þ

Thus, any IMC controller CIMC(s) is equivalent to a standard feed-
back controller C(s), and vice versa. The following closed loop

Fig. 1. Fractional-order control system with Bode's ideal transfer function.
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relation for IMC can be driven from Fig. 3 taking into account
Eq. (3).

y¼ CIMC G
1þCIMC ðG�GmÞ

rþ 1�CIMC Gm

1þCIMCðG�GmÞ
d ð5Þ

For the special case of a perfect model, GmðsÞ ¼ GðsÞ, Eq. (5) reduces to
y¼ CIMC G rþð1�CIMC GmÞ d ð6Þ
The IMC controller is designed in two steps [26]:

� Step 1: The process model is factored as

GmðsÞ ¼ Gþ
m ðsÞ G�

m ðsÞ ð7Þ
where Gþ

m ðsÞ contains any time delays and right-half plane
zeros. Gþ

m ðsÞ must have a steady-state gain equal to one.
� Step 2: The controller is specified as

CIMC ðsÞ ¼
1

G�
m ðsÞ f ðsÞ ð8Þ

where f(s) is a low pass filter with a steady-state gain of one. It
typically has the form [6]:

f ðsÞ ¼ 1
ð1þτc sÞr

ð9Þ

In analogy with the direct synthesis method, τc is the desired
closed loop time constant. Parameter r is a positive integer
chosen so that the controller C(s) is realizable. The usual choice
is r¼1.

2.3. Design procedure

In this section, it is intended to propose some general princi-
ples dealing with FOPID controllers in order to justify their
fractional structure and to propose some elementary design
techniques satisfying robustness objectives represented by the
CRONE principle. The main characteristic of our approach is the
importance given to a closed loop reference model, including
robustness and dynamical performances. The conventional feed-
back control shown in Fig. 3 is considered here where the plant
transfer function G(s) is integer. The proposed design technique is
a generalization of PID tuning methods, based on the equivalence
between IMC and conventional feedback. The main advantage of
the IMC based controller design is the stability of the closed loop

system. Indeed, the classic feedback structure and the IMC
structure are entirely equivalent and the controllers CIMC(s) and
C(s) are related through Eq. (4). So, the IMC structure being
internally stable, i.e., both the open loop plant G(s) and the IMC
controller CIMC(s) are stable, then the equivalent classic feedback
structure is stable [26,28].

The details of the controller design for the proposed method is
summarized in what follows.

Let Gm(s) the model of an LTI integer order system.

Step 1 According to the IMC controller design, Gm(s) must be
factorized as

GmðsÞ ¼ Gþ
m ðsÞ G�

m ðsÞ ð10Þ
G�
m ðsÞ is the nonsingular part of Gm(s) and Gþ

m ðsÞ is the
singular part. (Gþ

m ðsÞ contains the time delay and RHP-
zeros of Gm(s), its steady-state gain must be equal to one.
Thus, the steady-state gain of Gm(s) will remain in G�

m ðsÞ
which be used to design the IMC controller).

Step 2 The fractional property of the controller is introduced by
the fractional reference model f(s). To obtain the iso-
damping property described in Section 2.1, f(s) is given by

f ðsÞ ¼ 1
1þτc sαþ1 0oαo1 ð11Þ

The time constant τc and the non integer α are chosen to
impose the phase margin φm and the crossover frequency
ωc of the closed-loop.

α¼ π�φm

π=2
�1 and τc ¼

1
ωαþ1

c
ð12Þ

Step 3 The IMC Controller is calculated by

CIMCðsÞ ¼
1

G�
m ðsÞ f ðsÞ ð13Þ

Step 4 The standard feedback controller C(s) is the then

CðsÞ ¼ CIMCðsÞ
1�CIMCðsÞGmðsÞ

ð14Þ

Step 5 As we show in Section 3, the controller C(s) can be put in
the form of an integer PID structure cascaded with a
fractional filter H(s)

CðsÞ ¼HðsÞ:Kp 1þ 1
τi s

þτd s
� �

ð15Þ

3. IMC-PID-fractional-filter controllers design

In this section, we present the details of the method developed in
this paper. The objective of the design is to control an integer open
loop process with closed-loop specifications having fractional char-
acteristics as given in Eq. (11). The idea is to have the controller with
an integer PID structure as the open-loop system is integer, cascaded
with a fractional filter to meet closed-loop fractional specifications.
The general structure of the controller is given by

CðsÞ ¼ HðsÞ|ffl{zffl}
fractional filter

Kp 1þ 1
τi s

þτd s
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Integer PID Controller

ð16Þ

PID parameters are Kp is the gain, τi is the integral time constant, τd is
the derivative time constant, and H(s) is the fractional part of the
controller.

Fig. 2. Internal model control structure.

Fig. 3. Conventional feedback control.
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We present in what follows how to get the form of C(s) for four
models often encountered in the literature. Table 2 in the appen-
dix, gives the filter H(s) and the parameters Kp, τi and τd of the
integer PID for more other models.

Let us consider the delay-free integer system

GmðsÞ ¼
NðsÞ
DðsÞ: ð17Þ

We assume that neither N(s) or D(s) does have roots in the right
half-plane of the complex plane. In addition, Gm(s) is assumed to
be strictly proper. In this case, using Eq. (8), the IMC controller is
given by

CIMCðsÞ ¼
DðsÞ
NðsÞ

1
1þτc sαþ1 ð18Þ

and the conventional controller C(s) is then deduced, it is given by

CðsÞ ¼ DðsÞ
NðsÞτc sαþ1 ¼

1
sα

DðsÞ
τc s NðsÞ

ð19Þ

Note that C(s) is composed of two transfer functions: the fractional
integrator 1=sα (which characterizes the fractional aspect of the
controller) and the integer order DðsÞ=τc s NðsÞ which can be
factorized in the usual integer PID controller form. In what follows,
four examples are studied. In each case, we show that C(s) can be
put in the general form given by Eq. (16).

3.1. Delay-free all-pole model

Assume that the plant is described by the integer second order
model

GmðsÞ ¼
K

T s2þ2ξT sþ1
ð20Þ

the closed loop reference model is that given by Eq. (11). The IMC
controller is then

CIMCðsÞ ¼
T s2þ2ξT sþ1
Kð1þτc sαþ1Þ ð21Þ

The equivalent feedback controller is

CðsÞ ¼ 1
sα

T s2þ2ξT sþ1
K τc s

ð22Þ

which can be written as

CðsÞ ¼ 1
sα

2 T ξ
K τc

1þ 1
2 T ξ s

þ 1
2 ξ

s
� �

ð23Þ

C(s) is thus a classical integer PID controller cascaded with the
fractional integrator 1=sα.

3.2. Non-minimum phase model

Let us consider a plant described by the delay-free non minimal
phase model

GmðsÞ ¼
Kð1�BsÞ

ð1þT1sÞð1þT2sÞ
B40 ð24Þ

according to Eq. (7), GmðsÞ should be factored as

GmðsÞ ¼ K
ð1þT1sÞð1þT2sÞ

ð1�BsÞ ð25Þ

the reference model is, in this case, also given by Eq. (9). So,
according to Eq. (8), The IMC controller is

CIMCðsÞ ¼
ð1þT1sÞð1þT2sÞ
Kð1þτc sαþ1Þ ð26Þ

The equivalent feedback controller is then given by

CðsÞ ¼ ð1þT1sÞð1þT2sÞ
Kðτc sαþ1þBsÞ ¼ 1þðT1þT2ÞsþT1T2s2

KBs 1þτc
B sα

� � ð27Þ

which can be written as

CðsÞ ¼ 1
1þτc

B sα
T1þT2

KB
1þ 1

ðT1þT2Þs
þ T1þT2

ðT1þT2Þ
s

� �
ð28Þ

In this case also, C(s) is an integer PID controller cascaded with the
fractional filter 1=ð1þτc=BÞ sα .

3.3. Integrating first-order model

Assume that the plant is described by

GmðsÞ ¼
K

sð1þT sÞ: ð29Þ

According to Eq. (8), the IMC controller is

CIMC ðsÞ ¼
sð1þTsÞ

Kð1þτc sαþ1Þ ð30Þ

The corresponding feedback controller is given by

CðsÞ ¼ sð1þTsÞ
Kð1þτc sαþ1Þ ð31Þ

with is written as

CðsÞ ¼ 1
sα

1
K ;τc

ð1þT sÞ ð32Þ

C(s) is a classical PD controller cascaded with the fractional
integrator 1=sα .

3.4. First-order plus time delay model

In this last case, let us consider the most encountered model in
the industry, represented by the transfer function, for which (θ=T)
is small

GmðsÞ ¼ K e�θs

1þTs
ð33Þ

3.4.1. First-order Padé approximation of the e�θs term
The time delay term is approximated by a first-order Padé

approximation:

e�θs ¼ 1�θ
2 s

1þθ
2 s

ð34Þ

Substituting the time delay approximation in Gm(s) and using
Eq. (8), the IMC controller is

CIMC ðsÞ ¼
ð1þTsÞð1þθ

2 sÞ
Kð1þτc sαþ1Þ ð35Þ

Thus, the corresponding feedback controller is

CðsÞ ¼ ð1þTsÞ 1þθ
2 s

� �
K τcsαþ1þθ

2 s
� �¼ 1þ2Tþθ

2 sþTθ
2 s2

KB
2 s 1þ2τc

θ sα
� � ð36Þ

which can be written as

CðsÞ ¼ 1
1þ2τc

θ sα
2Tþθ
Kθ

1þ 1
2Tþθ

2 s
þ Tθ
2Tþθ

s

 !
ð37Þ

Once again, C(s) is an integer PID controller cascaded with the
fractional filter 1=ð1þð

ffiffi
i

p
2T=θÞsαÞ.
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3.4.2. First order Taylor expansion of the e�θs term
In this case, the time delay term is approximated by

e�θs ¼ 1�θs ð38Þ
The step responses of the first order system with delay and
its approximation are similar for small θ=T . Substituting the
time delay approximation in Gm(s) and using Eq. (8), the IMC
controller is

CIMC ðsÞ ¼
ð1þTsÞ

Kð1þτc sαþ1Þ ð39Þ

Thus, the corresponding feedback controller is

CðsÞ ¼ ð1þTsÞ
Kðτc sαþ1þθsÞ ¼

1þTs

Kθs 1þτc
θ sα

� � ð40Þ

which can be written as

CðsÞ ¼ 1
1þτc

θ s
α

T
Kθ

1þ 1
Ts

� �
ð41Þ

C(s) is then a usual PI controller cascaded with the fractional filter
1=ð1þðτc=θÞsαÞ.

As we have just seen, one of the main advantages of the
proposed method is that it has no restriction on the class of
process models. Tuning rules by the IMC method for other more
complicated process models such as integrating and inverse
processes with time delays are also listed in Tables 2 and 3 in
the Appendix.

4. Numerical examples

In this section, the IMC-PID-fractional-filter controller design is
applied to typical models encountered in the industry. Simulation
studies were carried out on two integer order processes found in
the literature. The first one is a first order plus time delay system
taken from [14]. The second example is a second order delay free
system reported in [29].

All time-responses involving fractional derivatives and inte-
grals are obtained with simulation making use of Oustaloup's
approximation in appropriate frequency range. The simulation
scheme is shown in Fig. 4, where G(s) is the plant, Gd(s) is the
disturbance transfer function and C(s) is the controller. r is a unit
step applied at t¼0 and d is a step disturbance applied in steady
state of the output. n is white noise added to the output signal.

4.1. Example 1

The first example is an experimental platform which consist of
a low pressure flowing water circuit which is bench mounted and
completely self contained [14]. The liquid level system is modeled
by a first-order transfer function given by

GðsÞ ¼ k
Tsþ1

e� Ls ð42Þ

characterized by the gain k¼3.13, the time constant T¼433.33 s
and a time delay L¼50 s.

The tuning method of the fractional order PIλDμ�controller
proposed in [14] is made so that the closed-loop system fulfills five
specifications regarding to plant uncertainties (especially gain
variation) load disturbances and high frequency noise. The speci-
fications are

� gain crossover frequency: ωc ¼ 0:008 rad=s;
� phase margin: φm ¼ 60○;
� robustness to variations in the gain: ðdðCðjωÞGðjωÞÞ

dω Þω ¼ ωc
¼ 0;

� sensitivity function: jSðjωÞjdBr�20 dB, 8ωr0:001 rad=s;
� noise rejection: jTðjωÞjdBr�20 dB, 8ωZ10 rad=s.

Because of the complexity of this set of nonlinear equations, the
FMINCON function of the optimization toolbox of Matlab has been
used to reach out the best solution. The first specification is taken
as the main function to minimize, and the rest of specifications
are taken as constraints for the minimization (see [14] for more
detail). Applying this optimization method, the fractional order
PIλDμ�controller obtained by Monje et al. is

CðsÞ ¼ 0:6152þ0:010
s0:8968

þ4:3867 s0:4773: ð43Þ

For this same example, the controller settings are calculated
using our proposed method and are summarized in Table 1. For
proper selection of the tuning parameters α and τc, gain crossover
frequency, ωc ¼ 0:008 rad=s and phase margin, φm ¼ 601 are taken.
We found α¼ 0:1111 and τc ¼ 136:22 s. Applying the proposed
method, the PI-fractional-filter controller obtained is given by

CðsÞ ¼ 2:7689
1þ2:7444 s0:1111

1þ 1
433:33 s

� �
ð44Þ

The fractional integral and derivative have been implemented by
the Oustaloup continuous approximation choosing a frequency
band from 0.001 to 10 rad/s using 8 cells by decade. The Bode plots
of the open-loop system are shown in Fig. 5. This figure shows that
the specifications of gain crossover frequency and phase margin
are met in both cases.

Fig. 6 shows the dynamic response characteristics of the
closed-loop system with a unit step change in the setpoint r(t) at
t¼0 s and a negative step disturbance d(t) of magnitude 0.1 at
t¼1500 s. The disturbance transfer function is arbitrary consid-
ered as GdðsÞ ¼ 1=ð1þ100 sÞ. As can be observed, the proposed
method provides better performance for both set point tracking
and disturbance rejection. Table 1 summarizes the characteristics
of the Bode plot of the open-loop and the step response of the
closed-loop system. From this table, it can be observed that the
overshoot is bigger with the method proposed by Monje et al.
nevertheless, the step response is established more slowly with
our method.

Fig. 7 shows the control law obtained with the proposed
method and that of Monje et al. One can observe the advantage
of the proposed method since the maximum value is 13.8 V with
the method given by Monje et al. and only 1.19 V with the
proposed method. To further analyze the robustness of the two
methods, variations in the gain and the time constant of the plant
have been considered. Figs. 8 and 9 show the results obtained
respectively.

Fig. 4. Simulation scheme.

Table 1
Characteristics of Bode plot of the open-loop and the step response of the closed-
loop.

ωc (rad/s) φm (deg) Mp (%) ts (2%)

Reference model 0.008 60 8.8 1330
Proposed method 0.0078 57.6 11.55 1330
Monje et al. method 0.008 59.4 13.35 752

B. Maâmar, M. Rachid / ISA Transactions 53 (2014) 1620–16281624



Fig. 8 shows that the method proposed by Monje et al. is better
because only a slight variation in the peak value of the output
response is produced when the gain changes. Indeed, as shown in
Fig. 5 with the method proposed by Monje et al., the phase of the
open-loop system is forced to be flat at wc and hence to be almost

constant within an interval aroundwc. This is not the case with our
method. however, when the time constant changes, the proposed
method is better.

Finally, to show the robustness of the two controllers with
respect to measurement noise, a white noise sequence with zero
mean, unit variance and a frequency equal to 100 Hz is added to
the measured signal. The complementary sensitivity function is
plotted in Fig. 10. This figure shows that the high frequency signals
are filtered better with the proposed controller. Fig. 11 shows the
impact of this feature on the quality of the output signal. It can be
observed that the output signal is much noisy with the fractional
order PID controller proposed by Monje et al.

4.2. Example 2

This example treats the fractional order controller in the
angular velocity control of a servo system. The servo system
includes the modules of DC motor with tacho-generator, inertia
load, encoder and gearbox with output disk (see [29] for more
details). For the identification experiment, a unit step input is
applied to the servo system and the process output is acquired.
The input–output data were transmitted to us by Barbosa.

To design the fractional controllers, Barbosa et al. used the
method of Ziegler–Nichols based on the estimated first order plus
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0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

Le
ve

ls

Step response

Fig. 6. Step responses the closed-loop system with disturbance: solid line –

proposed method; dashed line – Monje et al. [14].

0 500 1000 1500 2000 2500
0

5

10

15

Time (sec)

C
on

tro
l l

aw

Fig. 7. Control law applied to the controlled system: solid line – proposed method;
dashed line – Monje et al. [14].

100 200 300 400 500 600 700 800
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Step responses with k = 2.75, k = 3.13 and k = 7.75

Times (sec)

Le
ve

ls k

Fig. 8. Step responses with k variations: solid line – proposed method; dashed
line – Monje et al. [14].

0 100 200 300 400 500 600 700
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Time (sec)

Le
ve

ls

Step responses with T = 333.33, T = 433.33 and T = 533.33

T

Fig. 9. Step responses with T variations: solid line – proposed method; dashed
line – Monje et al. [14].

B. Maâmar, M. Rachid / ISA Transactions 53 (2014) 1620–1628 1625



time delay model, given by

GðsÞ ¼ 187:2106
1þ1:1841 s

e�0:1753 s ð45Þ

In our case, the controller design is based on the estimated second
order delay free model, given by

GðsÞ ¼ 187:2106
ð1þ0:74 sÞð1þ0:3 sÞ ð46Þ

in Fig. 12, we show the experiment step response, the step
responses simulation of the FOPTD model (45) and the second
order model (46).

The experimental test bench being unavailable, the compari-
son between the controller proposed by Barbosa et al. and
that proposed here will be realized on a more complex model
estimated once again from the experimental data. This last is
estimated using Levenberg–Marquardt algorithm [30].

The fractional controller proposed in [29] is a PIμD�controller.
The parameters of the controller are those of an integer PID-
controller obtained from the Ziegler–Nichols rules. In [Section (6)
29], authors have studied the effect of the fractional order of a
PIμD�controller in the velocity control. Step responses of the
angular velocity for several values of integrative order μ have
been presented. To compare between the PIμD�controller pro-
posed by Barbosa et al. and the PID-fractional-order-filter con-
troller (PID-FOF-controller) proposed here, we used the value
μ¼ 04 which seems to give a good tradeoff between the overshoot

and the settling time. The PIμD�controller proposed by Barbosa
et al. is

CðsÞ ¼ 0:0433þ0:1235
s

þ0:0038s ð47Þ

Though the damping is usually related with the phase margin, and
the settling time is related with the gain crossover frequency,
there are no analytical formulas that express these relations in the
case of process (46) controlled by (47). To design the parameters of
the PID-FOF-controller, we have plotted the step response
of the closed-loop system and measured the value of the over-
shoot. We estimate the frequency specifications φm ¼ 34○. and
ωc ¼ 8:16 rad=s that could approximately achieve the above
temporal specifications for the given nominal model (46) con-
trolled by (47). These values are then used to achieve the para-
meters values α¼ 0:6222 and τc ¼ 0:0332 s, of the closed-loop
reference model of Eq. (16). The open-loop model to be controlled
being a two time constants model, using Table 2 given in the
appendix, the PID-FOF-controller obtained is given by

CðsÞ ¼ 0:1674
s0:6222

1þ 1
1:04 s

þ0:2135s
� �

: ð48Þ

A magnitude 40 step setpoint input is added at t¼0 and an inverse
step load disturbance of magnitude 3 is added to the process
output at t¼3 s. The disturbance transfer function is GdðsÞ ¼
1=ð1þ0:74sÞ. Simulation results are shown in Fig. 13. Fig. 14
shows the Bode plot of the open-loop system. Fig. 14 shows the
specifications of gain crossover frequency and phase margin
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are met in both cases. It can seen from Fig. 13 that both
PIμD�controller and PID-FOF-controller are effective. Nevertheless,
it should be noted that the PIμD�controller converge slowly to
the target value. This is due to the fact that this controller have
insufficient gain at low frequencies (see Fig. 14) contrary to the
PID-FOF-controller.

In Fig. 15, applying the PIμD�controller of Barbosa et al.
(dashed line) and the proposed PID-FOF-controller (solid line),
the output step responses are plotted with the open-loop gain
variation from 125 to 250 (734% variation from the nominal value

187.2106). From Fig. 15, it can be seen obviously that the overshoot
of the PID-FOF-controller (solid line) remain constant under gain
variations, i.e., the iso-damping property is exhibited.

To show the robustness of the two controllers with respect to
measurement noise, a white noise sequence with magnitude 3,
zero mean, unit variance and a frequency equal to 10 Khz is added
to the measured signal. The complementary sensitivity function is
plotted in Fig. 16. This figure shows that the high frequency signals
are filtered better with the proposed controller. Fig. 17 shows the
impact of this feature on the quality of the output signal. It can be
observed that with the PID-FOF-controller (solid line), the step
response have not change but with the PIμD�controller, the
output signal has changed (as compared to Fig. 13). So we can
see that the PID-FOF-controller outperforms the PIμD�controller.

5. Conclusion

The paper presented a simple analytical PID-fractional-filter
controller design method based on the IMC paradigm for integer
processes. The proposed PID-fractional-filter is composed of an
integer order PID cascaded with a fractional filter. It can thus easily
to be implemented on the modern control hardware. The frac-
tional IMC/filter is more attractive than the integer one as it has
the iso-damping robustness property as well as more degrees
of freedom to meet other specifications. The proposed design
method is also simple to apply and can be used for several models
commonly encountered in industry as shown in Tables 2 and 3.
Tow representative processes frequently used in many previous
studies were considered in the simulation study. The simulation
was conducted by tuning the controller parameters to obtain in
the closed loop step response, a desired settling time (dependent
on the time constant τc) and desired overshoot (dependent on the
non integer order (α)). The proposed method has given improved
results in both the setpoint tracking and disturbance rejection.
Future works are underway to apply the proposed PID-fractional-
filter controller design for large scale systems and long dead time
systems.

Appendix A

See Tables 2 and 3.
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Table 2
IMC-PID-fractional-filter for delay free processes.
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Table 3
IMC-PID-Fractional-filter for processes with delay (first line, first order Taylor
expansion, second line, first order Padé approximation).
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