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Abstract This work presents a unified performance analy-
sis of the family of normalized least mean (NLM) algorithms
under very weak assumptions. The key feature of the analysis
is based on a recently proposed performance measure called
effective weight deviation vector. The name is so given as it is
the only component that contributes to the excess estimation
error of the adaptive filter. Using this novel concept, both the
steady-state analysis and the tracking analysis are presented
with a unified framework for the whole family of the NLM
algorithms. Thus, the derived results are valid for any normal-
ized stochastic gradient algorithm minimizing 2pth power of
the error where p is an integer value. The novelty of the analy-
sis resides in the fact that it does not impose restrictions on the
dependence between input successive regressors, the depen-
dence among input regressor elements, the length of the adap-
tive filter, the distribution of noise, and filter’s input. More-
over, this approach is not limited to only small step-size value,
and therefore, the analysis is valid for all the values of the step
size in the stable range of the NLM algorithms. Furthermore,
in this analysis, both stationary and non-stationary input sig-
nal and plant scenarios are considered. Consequently, asymp-
totic time-averaged convergence for the mean-squared effec-
tive weight deviation, mean absolute excess estimation error,
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and the mean-square excess estimation error for the NLM
algorithm are established for both constant and time-varying
plants. Finally, a number of simulation results are carried out
to corroborate the theoretical findings.
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1 Introduction

The most widely used algorithm for adaptive filters is the
family least mean algorithms (LM) [1]. Since the family of
LM algorithms belongs to the gradient-type algorithms, it
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inherits their low computational complexity and their slow
convergence, especially on highly correlated signals like
speech. This dependency is removed by the input normaliza-
tion as in the case of normalized least mean-square (NLMS)
algorithm [2] and the normalized least mean fourth (NLMF)
algorithm [3], which results in a great improvement in the
convergence behavior. However, this normalization compli-
cates the performance analysis of these types of algorithms.
Several works have attempted to study the performance of
such algorithms [2,4–9]. Unfortunately, the results of these
works are mostly (1) approximate by using strong assump-
tions, (2) lack transparency, and/or (3) do not result in closed-
form expressions.

Before discussing the features of the approach proposed
herein and its contributions, we provide, as a motivation, a
summary of selected techniques that have been employed
earlier in the literature for the study of adaptive algorithms.

(a) Independence assumption. It is common to assume that
the successive regressors are independent in what is widely
known as the independence assumptions [10]. Despite being
unrealistic, the independence assumptions are among the
most heavily used assumptions in adaptive filtering analysis.
(b) Restricted class of inputs. The input sequence is usu-
ally assumed to be white and/or has a Gaussian distribution
(e.g., [11–18]).
(c) Gaussian noise. Noise is sometimes restricted to be iid
Gaussian as in [11,12], and [19].
(d) Assumptions on the statistics of the weight-error vector.
While it is common to impose statistical assumptions on the
regression and noise sequences, similar conditions can also
be imposed on weight-error vector. For example, in studying
the sign-LMS algorithm, it was assumed in [19] that the ele-
ments of the weight-error vector are jointly Gaussian. This
assumption was shown in [20] to be valid asymptotically.
(e) Long Filter Assumption. In [1], the steady-state and the
transient performance of adaptive filters are analyzed by
restricting the length of adaptive filter. This restriction allows
to assume that the residual error is Gaussian [11,14], or that
its conditional value is [12,13]. By central limit arguments,
this assumption is justified for long adaptive filters [11,14].
(f) Small Step-size Assumption. It is very common to employ
small step-size assumption in analyzing the performance of
adaptive filters [1,10].

In contrast to the above-mentioned approaches, our
method is not employing any of these assumptions. Our work
is based on a recently introduced performance measure called
effective weight deviation vector [21]. This was originally
introduced for the convergence analysis of the NLMS algo-
rithm [21]. This vector is the component of weight deviation
vector in the direction of input regressor vector. It is shown
that the effective weight deviation is the only component that
contributes to the excess estimation error [21]. As a result,

the analysis based on the study of this component gives more
insight into the performance of the adaptive algorithm. Using
this approach, we have presented the steady-state analysis for
NLMF algorithm with constant channel and stationary input
[22].

1.1 Contribution and Organization

In this work, we have developed a unified framework for the
performance analysis of the family of NLM algorithms by
employing the concept of effective weight deviation vector
given in [21]. The main contribution of this work is a unified
performance analysis of the family of NLM algorithms that
has the following advantages:

1. It is a unified analysis, which is valid for the whole family
of NLM algorithms.

2. It holds for arbitrary dependence among successive
regressor vectors.

3. It holds for arbitrary dependence among the elements of
regressor vector.

4. This analysis is not restricted to the class of long filters.
5. It holds for arbitrary distributions of the filter input and

the noise.
6. It holds for all the values of the step size in the range that

insures the stability of the NLM algorithms, and
7. It can be applied for both stationary as well as non-

stationary input.
8. It can be applied for both stationary as well as non-

stationary channels.

The work is organized as follows. After introducing our
system model in the following subsection, a brief overview
of the newly introduced performance measure is presented in
Sect. 2.2. In Sect. 3, asymptotic time-averaged convergence
analysis for the mean-squared effective weight deviation,
mean absolute excess estimation error, and the mean-square
excess estimation error of the NLM algorithm is carried out.
The asymptotic time-averaged tracking analysis for a ran-
dom walk channel is presented in Sect. 4, and consequently,
the expressions for the mean-squared effective weight devi-
ation, mean absolute excess estimation error, and the mean-
square excess estimation error of the NLM algorithm are
derived. Simulation results are presented to validate the theo-
retical findings in Sect. 6, and paper is ended with concluding
remarks in Sect. 7.

2 Our Approach

Our approach to analyze the NLM algorithm is based on
a recently proposed performance measure called effective
weight deviation vector, which was originally introduced
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Fig. 1 Adaptive system identification

for the convergence analysis of the NLMS algorithm [21].
Before presenting the brief overview of the effective weight
deviation vector, system model used for the analysis is
described in the ensuing section.

2.1 System Model

Consider the case of adaptive plant identification problem
[1,10] as shown in Fig. 1. The desired response dk for the
adaptive filter is obtained from output of the plant, i.e.,

dk = cT xk + ηk, (1)

where

c = [c1, c2, . . . , cN ]T (2)

is the vector composed of plant parameters that are constant,
and

xk = [x1,k, x2,k, . . . , xN ,k]T (3)

is the input data vector at time k, ηk is the plant noise, N
is the number of plant parameters, and [·]T is the transpose
of [·]. The inputs x1,k, x2,k, . . . , and xN ,k may be successive
samples of same signal, such as in the case of adaptive echo
canceling and adaptive line enhancement [1,10]. They may
also be the instantaneous output of N parallel sensors, such
as in the case of adaptive beam-forming [1,10]. The iden-
tification of plant is made by an adaptive FIR filter whose
weight vector wk , assumed of dimension N , is adapted on
the basis of error ek given by

ek = dk − wT
k xk . (4)

the adaptation algorithm considered in this work is NLM
algorithm, which is the normalized version of least mean
family algorithms [3] and it can be described by

wk+1 = wk + 2μpe2p−1
k

xk

||xk ||2 , (5)

where μ > 0 is the algorithm step size, 2p is the error power
in the cost function to be minimized where p is an integer
value, and the norm of a vector x is defined as ||x|| ≡ √

xT x.
The factor 2p in the coefficient of the second term in Eq. (5)
can be incorporated within the step size μ. Thus, the NLM
algorithm can be rewritten as

wk+1 = wk + μe2p−1
k

xk

||xk ||2 , (6)

It can be seen that for p = 1, the algorithm in Eq. (6) will
result in the well-known NLMS algorithm [2] while it will
become the NLMF algorithm [3] for p = 2.

The error ek in Eq. (6) can be decomposed to two terms:
the plant noise ηk and the excess estimation error εk defined
by

εk = ek − ηk . (7)

εk is also termed as adaptation noise since it represents the
noise that appears at the filter output due to adaptation. The
signal behavior of adaptive filter is described by the evolution
of the moments of εk with the time. The weight deviation
vector is defined by

vk = wk − c. (8)

due to Eqs. (1), (4), (7), and (8), and it can be shown that

εk = −vT
k xk . (9)

2.2 Review of Effective Weight Deviation: A New
Performance Measure

In this section, a brief overview of effective weight deviation
vector [21] is presented. Let uk denote a unit vector along
the direction of the vector xk , i.e.,

uk =
{ xk||xk || if xk �= 0

an arbitrary unit vector if xk = 0

Consequently, the weight deviation vector vk can be
decomposed to two orthogonal components: the first com-
ponent vk is the projection of vk along the direction of vector
xk while the second component ṽk is orthogonal to xk . The
vectors vk and ṽk are given by

vk = (uT
k vk)uk, (10)

ṽk = vk − vk . (11)

Due to unit vector uk and Eq. (10), the vector vk satisfies

vk = vT
k xk

||xk ||2 xk . (12)

Equations (11), (12), and (9) imply that

vT
k xk = vT

k xk = −εk, (13)
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Ultimately, it can be shown that

ṽT
k xk = 0. (14)

Thus, only the component vk contributes to the excess
estimation error. The reminder, ṽk , of the weight deviation
vector vk does not contribute to the excess estimation error.
For this reason, vk is called as “the effective weight deviation
vector” [21]. From Eqs. (10) and (13), it can be shown that

|εk | = ||vk ||||xk ||. (15)

Equation (15) shows that what matters in determining the
magnitude of excess estimation error is the length of vector
vk rather than the length of vk . Thus, studying the behavior of
||vk || gives a generally brighter insight into the performance
of the algorithm than studying the behavior of ||vk ||. The the-
oretical advantage of vk in the context of the NLM algorithm
is that it can be analyzed without the need to calculate mathe-
matical expectations of quantities normalized by ||xk ||2. This
is due to the fact that the normalization by ||xk ||2 already
included in the definition of vk , as seen by Eq. (12). There-
fore, vk enables a rigorous analysis of the NLM algorithm
under weak assumptions. In this work, we derived an upper
bound on the long-term average of mean-squared effective
weight deviation (E

[||vk ||2
]
), mean-square excess estima-

tion error (E
[
ε2

k

]
), and mean absolute excess estimation error

(E
[|εk |

]
). These long-term averages are defined as follows:

L1
�= Limsup

k→∞
1

k

k∑
j=1

E
[
||v j ||2

]
, (16)

L2
�= Limsup

k→∞
1

k

k∑
j=1

E
[
ε2

j

]
, (17)

L3
�= Limsup

k→∞
1

k

k∑
j=1

E
[|ε j |

]
, (18)

where the notation “Limsup” is defined by

Limsup
k→∞

sk ≡ Lim
k→∞

(
sup si

i≥k

)
, (19)

where “sup” means supremum that refers to least upper
bound. The smaller is the value of long-term averages
Eqs. (16), (17), and (18), the finer is the steady-state per-
formance of algorithm and vice versa. The upper bound of
the long-term average Eq. (16) is used along with Eq. (15) to
derive bounds for mean-square excess estimation error and
mean absolute excess estimation error.

3 Convergence Analysis of the NLM Algorithm

In carrying out the convergence analysis, we have consid-
ered the two scenarios of stationary and non-stationary input
signals separately.

3.1 Scenario 1: Stationary Input Signal

In this case, before presenting the convergence analysis, some
necessary assumptions required for our analysis are listed as
follows:

CA1: The sequences {xk} and {ηk} are mutually indepen-
dent.

CA2: The sequence {xk} is stationary with finite E [1/

||xk ||2
]
.

CA3: The sequence {ηk} is a stationary sequence of inde-
pendent zero mean random variables with finite
even moments (i.e., with finite E[η2

k ] = φ2
η =

σ 2
η , E[η4

k ] = φ4
η, E[η6

k ] = φ6
η, etc.).

Assumptions CA1 and CA3 are well-known indepen-
dence assumption while assumption CA2 can be well justi-
fied as in the case of NLMS algorithm [21]. It is worthwhile to
note that these independence assumptions are weak as they
are not employing independence between input successive
regressors and the independence among input regressor ele-
ments. Assumption CA2 is valid for the case of the NLM
algorithm to ensure its stability. This is because of the fact
that the nonexistence of E

[
1/||xk ||2

]
will diverge the algo-

rithm due to its high effective step-size μ/||xk ||2.

3.1.1 Analysis of Effective Weight Deviation Vector

The update recursion for the weight deviation vector (vk) is
obtained using Eqs. (1), (4), (6), and (8) and can be shown
to be

vk+1 = vk + μ(ηk − vT
k xk)

2p−1 xk

||xk ||2 . (20)

As we are going to derive the upper bound for steady-
state scenario, the higher-order terms of vT

k xk can be ignored
(since excess estimation error is very small at steady state).
Thus, after expanding the term (ηk − vT

k xk)
2p−1 with bino-

mial expansion, we can use the following approximation:

vk+1 ≈ vk + μ(η
2p−1
k − (2p − 1)η

2p−2
k vT

k xk)
xk

||xk ||2 . (21)

Now, taking expectation after squaring both sides of the
above equation and using assumptions CA1 and CA3, it is
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found that

E[||vk+1||2] = E[||vk ||2] −
(

2(2p − 1)μφ2p−2
η

−(2p − 1)2μ2φ4p−4
η

)
E

[
(vT

k xk)
2

||xk ||2
]

+μ2φ4p−2
η E

[
1

||xk ||2
]

, (22)

where φ
2p−2
η , φ

4p−2
η , and φ

4p−4
η are the (2p − 2)th, (4p −

2)th, and (4p−4)th moments of the noise sequence η, respec-
tively. Using the definition of weight deviation vector given
in Eq. (12), we can rewrite the above equation as follows:

E[||vk+1||2] = E[||vk ||2] −
(

2(2p − 1)μφ2p−2
η

−(2p − 1)2μ2φ4p−4
η

)
E

[
||vk ||2

]
+μ2φ4p−2

η E

[
1

||xk ||2
]

, (23)

Iterating the above equation backward (k − 1) itera-
tions and using the stationarity assumption CA2 along with
assumptions CA1 and CA3, the above equation can be set
up as follows:

E[||vk+1||2] = E[||v1||2] −
(

2(2p − 1)μφ2p−2
η

−(2p − 1)2μ2φ4p−4
η

) k∑
j=1

E
[
||v j ||2

]

+kμ2φ4p−2
η E

[
1

||x1||2
]

. (24)

Since E[||vk+1||2] is a positive quantity and it converges
provided that 0 < μ < 2

(2p−1)φ
2p−2
η

, on dividing the above

equation by k, one obtains

0 ≤ 1

k
E[||v1||2] −

(
2(2p − 1)μφ2p−2

η

−(2p − 1)2μ2φ4p−4
η

) 1

k

k∑
j=1

E
[
||v j ||2

]

+μ2φ4p−2
η E

[
1

||x1||2
]

(25)

Finally, by taking the limit as k → ∞ on both sides of
the above equation and using the definition Eq. (16), it can
be shown that the following bound exists:

L1 ≤ μφ
4p−2
η(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

)
×E

[
1

||x1||2
]

. (26)

This relation gives us an upper bound on the long-term aver-
age of the mean-squared norm of vk . The above result is
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Fig. 2 Long-term average of the mean-squared effective weight devi-
ation for constant channel identification, N = 4, Gaussian noise

obtained under very weak assumptions, and it has all the
points of strength mentioned in Sect. 1. It can be observed that
by substituting p = 1 in Eq. (26), the bound will be reduced
to the result for the NLMS algorithm reported in [21]. More-
over, it can be noticed from this bound that the numerator
term μφ

4p−2
η is more effective than the denominator term(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

)
. As a result, it can

be inferred that L1 is a monotonically increasing function of
μ. This fact can be observed in the simulation results (see
Fig. 2).

3.1.2 Analysis of Excess Estimation Error

In analyzing the convergence of excess estimation error, we
have considered the following two cases:

Case 1: Bounded Plant Input
To proceed the analysis with bounded plant input, we use the
following assumption:
CA4: There exists a positive number B such that ||xk || < B
for all k.

This assumption is valid in many practical cases as natu-
rally input data are bounded. Now, using the relation (15) and
assumption CA4, the bound given in Eq. (26) is modified to
the following:

L2 ≤ μφ
4p−2
η B2(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

) E

[
1

||x1||2
]

.

(27)

This bound shows that the long-term average of the mean-
squared excess estimation error can be reduced to an arbitrary
small value by using very small value of the step size pro-
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vided that 0 < μ < 2
(2p−1)φ

2p−2
η

. Moreover, in achieving the

above bound, we have used very weak assumptions and it
has the same advantages as in the case of bound Eq. (26).
Furthermore, this bound emphasizes the fact mentioned in
Sect. 2.2 that a good behavior of the effective weight devia-
tion vector implies a good behavior of the excess estimation
error.

Case 2: Unbounded Plant Input
In this case too, we need the following assumption to simplify
the analysis:
CA5: The sequence {xk} is stationary with finite
E[||xk ||2].

This is a weak assumption as the second-order moment of
input regressor generally exists. Now, using the relation (15)
and assumption CA5, the bound given in Eq. (26) can be set
up as follows:

L3

≤
√√√√√ μφ

4p−2
η(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

) E
[||x1||2

]
E

[
1

||x1||2
]
.

(28)

This bound implies that the long-term average of the
absolute excess estimation error can be reduced to an
arbitrary small value by using very small value of the
step size provided that 0 < μ < 2

(2p−1)φ
2p−2
η

. More-

over, it can be noticed that the upper bound on the right-
hand side of Eq. (28) will remain unchanged even if
the sequence xk is multiplied by a constant (as in case
of amplification or attenuation). This indicates that the
average behavior of the steady-state excess estimation
error is not sensitive to the input power of the adaptive
filter.

3.2 Scenario 2: Non-stationary Input Signal

In this section, we consider a non-stationary input signal.
Consequently, assumption A2 cannot be employed here. In
this case, instead of assumption CA2, we will use the fol-
lowing assumption,
CA6: For a non-stationary sequence {xk}, the following long-
term average exists:

F
�= Limsup

k→∞
1

k

k∑
j=1

E
[
1/||x j ||2

]
. (29)

It can be shown that the above assumption remains valid
if the time-varying moment E

[
1/||x j ||2

]
is convergent as in

the case of the NLMS algorithm [21].

3.2.1 Analysis of Effective Weight Deviation Vector

Starting from Eq. (23), after iterating backward (k − 1) iter-
ations and using assumption CA6, it can be shown that

E[||vk+1||2] = E[||v1||2] −
(

2(2p − 1)μφ2p−2
η

−(2p − 1)2μ2φ4p−4
η

) k∑
j=1

E
[
||v j ||2

]

+μ2φ4p−2
η

k∑
j=1

E
[
1/||x j ||2

]
. (30)

Working along the same line of action as for the stationary
input case, we will get

0 ≤ 1

k
E[||v1||2] −

(
2(2p − 1)μφ2p−2

η

−(2p − 1)2μ2φ4p−4
η

) 1

k

k∑
j=1

E
[
||v j ||2

]

+μ2φ4p−2
η

1

k

k∑
j=1

E
[
1/||x j ||2

]
. (31)

Finally, by taking the limit as k → ∞ on both sides of
the above equation and using the definition Eq. (29), it can
be shown that the following bound exists:

L1 ≤ μφ
4p−2
η F(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

) . (32)

Comparing the above result with that of the stationary
input case given by Eq. (26), it can be observed that the long-
term average of the mean-squared effective weight devia-
tion for non-stationary input is depending on time-varying
moments of E

[
1/||x j ||2

]
instead of a constant moment

E
[
1/||x1||2

]
.

3.2.2 Analysis of Excess Estimation Error

In this case too, we have considered both the bounded
and unbounded input scenarios to study the convergence of
excess estimation error.

Case 1: Bounded Plant Input
For non-stationary bounded plant input, the assumption CA4
is employed as in the case of stationary bounded input. Ulti-
mately, by using the assumptions CA4 and CA6, bound on
the long-term average of mean-squared excess estimation
error can be obtained from Eq. (32) as follows:

L2 ≤ μφ
4p−2
η B2 F(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

) . (33)
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This bound shows that the long-term average of the mean-
squared excess estimation error can be reduced to an arbitrary
small value by using very small value of the step size. More-
over, in achieving the above bound, we have used very weak
assumptions, and it has the same advantages as in the case
of bound Eq. (26). Furthermore, this bound emphasizes the
fact mentioned in Sect. 2.2 that a good behavior of the effec-
tive weight deviation vector implies a good behavior of the
excess estimation error.

Case 2: Unbounded Plant Input
For non-stationary unbounded plant input, we will make use
of the following assumption to simplify the analysis:
CA7: The following long-term average of E[||xk ||2] exists:

P
�= Limsup

k→∞
1

k

k∑
j=1

E
[
||x j ||2

]
. (34)

Similar to the case of the NLMS algorithm, the above
assumption is justified if the time-varying moment E

[||x j ||2
]

is convergent. Consequently, using the relation (15) and
assumption CA7, the bound given in Eq. (32) can be set
up as follows:

L3 ≤
√√√√√ μφ

4p−2
η P F(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

) . (35)

This bound implies that the long-term average of the
absolute excess estimation error can be reduced to an arbi-
trary small value by using very small value of the step size.
Moreover, it can be noticed that the upper bound on the
right-hand side of Eq. (28) will remain unchanged even if
the sequence xk is multiplied by a constant (as in case of
amplification or attenuation). This indicates that the average
behavior of the steady-state excess estimation error is not
sensitive to the input power of the adaptive filter.

4 Tracking Analysis of the NLM Algorithm

In the case of tracking analysis, adaptive plant identification
of a time-varying plant is considered. More specifically, the
plant parameters vary according to the random walk chan-
nel. Consequently, the desired response for the adaptive filter
will be

dk = cT
k xk + ηk, (36)

where ck is a time-varying plant varies according to random
walk model, i.e.,

ck+1 = ck + qk, (37)

where qk is a random vector of same dimension as that of
plant ck . In case of tracking, the effective weight deviation

vector defined in Eq. (8) is modified to

vk = wk − ck . (38)

4.1 Scenario 1: Stationary Input Signal and Plant

The assumptions employed in the tracking analysis of the
NLM algorithm with stationary input signal and plant are
listed as follows (note that some of the assumptions are same
as employed in the case of convergence analysis):
TA1: The sequences {xk}, {qk}, and {ηk} are mutually inde-
pendent.
TA2 ≡ CA2.
TA3 ≡ CA3.
TA4: The sequence {qk} is a stationary sequence of indepen-
dent zero mean random vectors with finite second moments.

Assumptions TA2 and TA3 have same justification as
mentioned in Sect. 3 while assumptions TA1 and TA4 are
commonly used in analyzing the tracking of a random walk
channel [10].

4.1.1 Analysis of Effective Weight Deviation Vector

The update recursion for the weight deviation vector (vk) is
obtained using Eqs. (4), (5), (36), and (37) and found to be

vk+1 ≈vk +μ
(
η

2p−1
k −(2p − 1)η

2p−2
k vT

k xk

) xk

||xk ||2 −qk,

(39)

where we have used the same approximation as was used in
Sect. 3.1.1. Upon squaring both sides of the above equation
and using assumptions TA1−TA4 and Eq. (38), it is found
that

E[||vk+1||2] = E[||vk ||2] −
(

2(2p − 1)μφ2p−2
η

−(2p − 1)2μ2φ4p−4
η

)
E

[
||vk ||2

]
+μ2φ4p−2

η E

[
1

||xk ||2
]

+ E
[
||q1||2

]
. (40)

Iterating the above equation backward (k − 1) iterations
gives the following recursion:

E[||vk+1||2] = E[||v1||2] −
(

2(2p − 1)μφ2p−2
η

− (2p − 1)2μ2φ4p−4
η

) k∑
j=1

E
[
||v j ||2

]

+ kμ2φ4p−2
η E

[
1

||x1||2
]

+ k E
[
||q1||2

]
.

(41)

Since E[||vk+1||2] is a positive quantity, therefore upon
dividing the above recursion by k, one obtains
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0 ≤ 1

k
E[||v1||2] −

(
2(2p − 1)μφ2p−2

η

−(2p − 1)2μ2φ4p−4
η

) 1

k

k∑
j=1

E
[
||v j ||2

]

+μ2φ4p−2
η E

[
1

||x1||2
]

+ E
[
||q1||2

]
.

(42)

Finally, by taking the limit as k → ∞ and using the defi-
nition Eq. (16), the following upper bound is provided

L1 ≤ 1(
2(2p − 1)φ

2p−2
η − (2p − 1)2μφ

4p−4
η

)
×

[
μφ4p−2

η E

[
1

||x1||2
]

+ μ−1 E
[
||q1||2

]]
. (43)

It is worthwhile to note that we are not restricting our track-
ing analysis for slow plant variation, which is commonly
employed in the analysis of adaptive filtering. Moreover,
the bound given by Eq. (43) has all the points of strength
which are mentioned in Sect. 1. Furthermore, unlike the
constant plant case, the bound for tracking random walk
plant Eq. (43) is not a monotonically increasing function
of step size. In contrast, the first term in the bracket (i.e.,

μφ
4p−2
η E

[
1

||x1||2
]
) is increasing with step size while the sec-

ond term (i.e., μ−1 E
[||q1||2

]
) is decreasing with step size.

4.1.2 Analysis of Excess Estimation Error

The cases of bounded and unbounded plant input are ana-
lyzed separately.

Case 1: Bounded Plant Input
Here too, assumption CA4 can be employed as was used in
the convergence analysis of constant plant in Sect. 3. Con-
sequently, using TA1−TA4 and CA4, it can be shown that
bound on the long-term average of mean-square excess esti-
mation error is as follows:

L2 ≤ B2(
2(2p − 1)φ

2p−2
η − (2p − 1)2μφ

4p−4
η

)
×

[
μφ4p−2

η E

[
1

||x1||2
]

+ μ−1 E
[
||q1||2

]]
. (44)

Case 2: Unbounded Plant Input
For tracking with unbounded plant input, the assumption
CA5 is still valid. As a result, by employing TA1 − TA4
and CA5, bound on the long-term average of absolute excess
estimation error can be shown to be

L3 ≤ E
[||x1||2

]
(

2(2p − 1)φ
2p−2
η − (2p − 1)2μφ

4p−4
η

)
×

[
μφ4p−2

η E

[
1

||x1||2
]

+ μ−1 E
[
||q1||2

]]
. (45)

4.2 Scenario 2: Non-stationary Input Signal and Plant

In this section, we consider non-stationary input signal and
plant. Here, in addition to assumptions CA6 and CA7, we
will also make use of the following assumption instead of the
assumption TA4,

TA5: The sequence {qk} is a sequence of independent zero
mean random vectors with a finite value of the following
long-term average

Q
�= Limsup

k→∞
1

k

k∑
j=1

E
[
||q j ||2

]
. (46)

This assumption can also be justified similar to the justifi-
cation of CA6 and CA7, that is, the long-term average Q will
exist if its time-varying moment (E

[||q j ||2
]
) is convergent.

4.2.1 Analysis of Effective Weight Deviation Vector

Starting from Eq. (40), after some simplification steps by
employing assumptions TA1, TA3, TA5, CA6, and CA7,
the upper bound on the long-term average of mean-squared
effective weight deviation is found to be

L1 ≤ 1(
2(2p − 1)φ

2p−2
η − (2p − 1)2μφ

4p−4
η

)
×

[
μφ4p−2

η F + μ−1 Q
]
.

(47)

4.2.2 Analysis of Excess Estimation Error

Here again, the cases of bounded and unbounded plant input
are investigated separately.

Case 1: Bounded Plant Input
By employing TA1, TA3, TA5, CA4, and CA6, bound on
the long-term average of mean-square excess estimation error
is found to be

L2 ≤ B2(
2(2p − 1)φ

2p−2
η − (2p − 1)2μφ

4p−4
η

)
×

[
μφ4p−2

η F + μ−1 Q
]
. (48)

Case 2: Unbounded Plant Input
Here, by employing TA1, TA3, TA5, CA5, CA6, and CA7,
bound on the long-term average of absolute excess estimation

123



Arab J Sci Eng (2014) 39:7145–7157 7153

Table 1 Summary of the results for convergence analysis

Bound on Stationary input Non-stationary input

L1
μφ

4p−2
η

D E
[

1
||x1||2

]
μφ

4p−2
η F
D

L2
μφ

4p−2
η B2

D E
[

1
||x1||2

]
μφ

4p−2
η B2 F

D

L3

√
μφ

4p−2
η

D E
[||x1||2

]
E

[
1

||x1||2
] √

μφ
4p−2
η P F

D

error can be shown to be

L3 ≤ P(
2(2p − 1)φ

2p−2
η − (2p − 1)2μφ

4p−4
η

)
×

[
μφ4p−2

η F + μ−1 Q
]
. (49)

5 Summary of Analysis

Here, the analytical results of Sects. 3 and 4 are summa-
rized in the following two tables. Tables 1 and 2 demonstrate
different bounds (L1, L2, andL3) with both stationary and
non-stationary scenarios for the convergence and the track-
ing analysis of the NLM algorithm, respectively. In these
tables, D stands for

D
�=

(
2(2p − 1)φ2p−2

η − (2p − 1)2μφ4p−4
η

)
(50)

6 Simulation Results

In this section, the performance analysis of the NLM algo-
rithm is investigated in an unknown system identification
problem with c = [1, 1, . . . , 1]T . Specifically, we have inves-
tigated the performance of the NLM algorithm with p = 2 (as
the result for p = 1 is already available in [21]), which cor-
responds to the well-known NLMF algorithm. System noise
η is a zero mean i.i.d. sequence with variance 0.01. The plant
input regressor vector xk = [xk, xk−1, . . . , xk−N+1]T with
xk being stationary zero mean unity variance. The objective
of our simulations is to validate the derived analytical results
without restrictions on

1. The dependence between successive regressors,
2. The dependence between the components of regressor,

3. The value of step size in the range 0 < μ < 2
(2p−1)φ

2p−2
η

,

4. The length of adaptive filter,
5. The distribution of the filter input and the noise,
6. Stationarity of input and plant

The first two objectives are achieved via generating a highly
correlated input sequence as follows:

xk = βxk−1 +
√

1 − β2wk (51)

where β is a correlation factor and wk is a zero mean unity
variance i.i.d. sequence. In our simulations, we have used
β = 0.95 showing a highly correlated input sequence. In
order to show that our analytical results analysis holds for
all the values of the step size in the range of stable NLMF
algorithm, all simulation experiments are carried out for a
wide range of step size [0.01, 1].

To meet the above-mentioned objectives, simulation
experiments are carried out for both constant channel iden-
tification and tracking random walk channel scenarios.

6.1 Constant Channel Identification

Figure 2 compares the long-term average of the mean-
squared effective weight deviation obtained by simulation
and the upper bound given in Eq. (26) for Gaussian noise
with filter length equal to 4 showing a good match between
theory and simulation. It can be seen that the simulation is
carried out over a wide range of step size showing that the
analysis is not restricted to small value of step size only. To
verify the non-restriction of analytical results by filter length,
the same experiment is repeated filter length equal to 25 in
Fig. 3. It can be depicted from these figures that the analyt-
ical result is valid for both long and short adaptive filters.
Next, to check the non-restriction on distribution of the plant
input and the noise, the same experiment is performed with
uniform input and noise in Fig. 4. It can be depicted from
the figure that the derived analytical result is not limited to a
particular distribution of input and noise sequences.

Next, the analytical upper bound on the long-term average
of mean-squared excess estimation error given by Eq. (27) is
investigated in Fig. 5 with binary input (which is a bounded
input), uniform noise, and filter length equal to 4. Here too,
analytical result has modeled the simulation results very well.

Table 2 Summary of the results
for tracking analysis

Bound on Stationary input Non-stationary input and plant

L1
1
D

[
μφ

4p−2
η E

[
1

||x1||2
]

+ μ−1 E
[||q1||2

]] 1
D

[
μφ

4p−2
η F + μ−1 Q

]
L2

B2

D

[
μφ

4p−2
η E

[
1

||x1||2
]

+ μ−1 E
[||q1||2

]] B2

D

[
μφ

4p−2
η F + μ−1 Q

]
L3

E
[||x1||2]

D

[
μφ

4p−2
η E

[
1

||x1||2
]

+ μ−1 E
[||q1||2

]] P
D

[
μφ

4p−2
η F + μ−1 Q

]
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Fig. 3 Long-term average of the mean-squared effective weight devi-
ation for constant channel identification, N = 25, Gaussian noise
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Fig. 4 Long-term average of the mean-squared effective weight devia-
tion for constant channel identification, N = 4, uniform input and noise

In order to verify the analytical findings for non-stationary
input, a non-stationary input sequence is generated via the
following model:

xk = xk−1 + wk (52)

where wk is a zero mean unity variance i.i.d. sequence with
variance σ 2

w. The value of σ 2
w used in our experiments is

equal to 0.01. With this non-stationary input, uniform noise,
and filter length equal to 4, the analytical results given in
Eqs. (32), (33), and (35) derived for non-stationary input
scenario are investigated in Figs. 6, 7, and 8, respectively. It
can be seen that simulation results very well substantiated
the analytical findings showing validation of the analysis for
non-stationary input also.
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Fig. 5 Long-term average of mean-squared excess estimation error,
N = 4, binary input, and Gaussian noise
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Fig. 6 Long-term average of mean-squared effective weight deviation
for constant channel identification, N = 4, non-stationary input

6.2 Tracking Random Walk Channel

In this section, simulation results are presented to validate the
analytical results derived in Sect. 4. A random walk channel
is generated using model Eq. (37). Figure 9 depicts the com-
parison between both the theoretical and simulation results
of long-term average of mean-squared effective weight devi-
ation for two different values of σ 2

q , i.e., 1e−6, and 1e−7. The
filter length used is 4 while both input and noise are uniformly
distributed. Analytical curve is obtained using Eq. (43). As
can be seen in Fig. 9, close agreement between theory and
simulation is obtained. It is observed from this figure that
degradation in performance is obtained by increasing the
value of σ 2

q . Also, unlike in the constant channel case, the
long-term average of mean-squared effective weight devia-
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Fig. 7 Long-term average of mean-squared excess estimation error,
N = 4, non-stationary input
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Fig. 8 Long-term average of mean absolute excess estimation error,
N = 4, non-stationary input

tion is not a monotonically decreasing function of the step
size.

In Fig. 10, similar experiment is performed with a longer
adaptive filter, that is, with a filter length equal to 20 while
both input and noise are Gaussian distributed and σ 2

q = 1e−7.
Here too, similar behavior is observed showing that our ana-
lytical results are not dependent on the adaptive filter’s length
and on the distribution of the filter input and the noise.

Next, the long-term average of mean-squared excess esti-
mation error for tracking random walk channel with station-
ary uniform input and σ 2

q = 1e−7 is investigated in Fig. 11.
Here, the analytical results are obtained by plotting Eq. (44).
It can be easily seen from the result that there is a good match
between simulation and the derived analytical results.
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Fig. 9 Long-term average of mean-squared effective weight deviation
for tracking random walk channel, N = 4, stationary uniform input

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

 Step Size μ

 A
ve

ra
g

ed
 M

ea
n

 S
q

u
ar

e 
E

ff
ec

ti
ve

 W
ei

g
h

t 
D

ev
ia

ti
o

n
Simulation Result
Theoretical Upper Bound

Fig. 10 Long-term average of mean-squared effective weight devia-
tion for tracking random walk channel, σ 2

q = 1e−7, N = 20, stationary
Gaussian input and noise

Finally, in order to test the validation of our analysis for
non-stationary input, the long-term average of mean-squared
effective weight deviation for a non-stationary uniform input
[generated using Eq. (52)] and uniform noise with σ 2

q =
1e−7 is plotted in Fig. 12. Analytical result is obtained from
the expression Eq. (47). Again, consistency in the results is
obtained, which further validates our analytical findings.

7 Conclusion

In this work, a unified rigorous convergence analysis of the
NLM algorithm is carried out using a newly proposed per-
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Fig. 11 Long-term average of mean-squared excess estimation error
for tracking random walk channel, N = 4, σ 2

q = 1e−7, stationary
uniform input
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Fig. 12 Long-term average of mean-squared effective weight devia-
tion for tracking random walk channel, σ 2

q = 1e−7, N = 4, non-
stationary uniform input and noise

formance measure called effective weight deviation vector.
Thus, the derived results are valid for any normalized sto-
chastic gradient algorithm minimizing 2p power of the error.
The analysis is rigorous in a sense that it is not restricted
to any limitations on the dependence between input succes-
sive regressors, the dependence among input regressor ele-
ments, the length of the adaptive filter, the distribution of
noise and filter’s input, and the value of step size. Asymp-
totic time-averaged convergence for the mean-squared effec-
tive weight deviation, mean absolute excess estimation error,
and the mean-square excess estimation error for the NLM
algorithm is performed and consequently new explicit upper
bounds for the long-term average of mean-squared effective

weight deviation, mean-squared excess estimation error, and
mean absolute excess estimation error are derived. Simu-
lation results presented without imposing above-mentioned
restrictions verified our theoretical findings.
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