Since (x_n) and (y_n) are Cauchy, we can make the right side as small as we please. This implies that the limit in (2) exists because R is

We must also show that the limit in (2) is independent of the particular choice of representatives. In fact, if $(x_n) \sim (x_n')$ and $(y_n) - (y_n')$, then by (1),

$$|d(x_n, y_n) - d(x_n', y_n')| \le d(x_n, x_n') + d(y_n, y_n') \longrightarrow 0$$

as $n \longrightarrow \infty$, which implies the assertion

$$\lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(x_n', y_n').$$

We prove that \hat{d} in (2) is a metric on \hat{X} . Obviously, \hat{d} satisfies (M1) in Sec. 1.1 as well as $\hat{d}(\hat{x}, \hat{x}) = 0$ and (M3). Furthermore,

$$\hat{d}(\hat{x}, \hat{y}) = 0 \implies (x_n) \sim (y_n) \implies \hat{x} = \hat{y}$$

gives (M2), and (M4) for d follows from

$$d(x_n, y_n) \leq d(x_n, z_n) + d(z_n, y_n)$$

by letting $n \longmapsto \infty$.

(b) Construction of an isometry $T: X \longrightarrow W \subset \hat{X}$. With each $b \in X$ we associate the class $\hat{b} \in \hat{X}$ which contains the constant Cauchy sequence (b, b, \cdots) . This defines a mapping $T: X \longrightarrow W$ onto the subspace $W = T(X) \subset X$. The mapping T is given by $b \longmapsto \hat{b} = Tb$. where $(b, b, \cdots) \in \hat{b}$. We see that T is an isometry since (2) becomes simply

$$\hat{d}(\hat{b},\hat{c}) = d(b,c);$$

here \hat{c} is the class of (y_n) where $y_n = c$ for all n. Any isometry is injective, and $T: X \longrightarrow W$ is surjective since T(X) = W. Hence W and X are isometric; cf. Def. 1.6-1(b).

We show that W is dense in \hat{X} . We consider any $\hat{x} \in \hat{X}$. Let $(x_n) \in \hat{x}$. For every $\varepsilon > 0$ there is an N such that