The Doppler Effect

What is Doppler Effect?

Mt is a phenomenon named after Austrian physicist Christian Doppler who proposed it in 1842 .
Yt is the change in the measured frequency of a source, due to the motion of the source (and/or) the observer.
>The Doppler effect for sound waves travel in a medium, depends on two velocities: the source velocity and the observer velocity with respect to that medium.
However, light and other electromagnetic waves require no medium. Therefore the Doppler effect for electro-magnetic waves depends on only one velocity: the relative velocity between the source and the observer.

Suppose that there is a source of frequency v_{0} (and corresponding period T_{0}) at rest on the Y axis in S_{2}.

And the source is moving with constant velocity v along the x -axis .

Making an angle θ_{l} between the source position vector \& +x -axis.

If we are at rest at the origin of S_{1}, we would measure the frequency of the source to be

$$
v=\frac{v_{0}}{\gamma\left[1+\beta \cos \theta_{1}\right]}=v_{0} \frac{\sqrt{1-v^{2} / c^{2}}}{1+(v / c) \cos \theta_{1}}
$$

In this relation, v_{0} is measured in a coordinate system at rest with respect to the source (zero relative speed, thus the subscript zero). The observers measure the frequency v, the relative speed v, and the angle θ_{l} between the source position vector $r_{l} \&+\mathrm{x}$-axis .

$$
\begin{aligned}
& \text { At } S_{2} ; \\
& x_{2}=0 \quad \& \quad x_{2}{ }^{`}=0 \\
& T_{0}=t_{2} \grave{-} t_{2} \\
& \text { At } S_{1} ; \\
& x_{1}=\gamma v t_{2} \& x_{1} `=\gamma v t_{2} ` \\
& T=\left(t_{1} ` t_{1}\right)+\left(r_{1} ` r_{1}\right) / c
\end{aligned}
$$

But ;

$r_{1}{ }^{`} r_{1}=\left(x_{1}{ }^{`}-x_{1}\right) \cos \theta_{1}=\gamma_{V} T_{0} \cos \theta_{1}$

Hence;

$$
\begin{aligned}
T & =\gamma\left(t_{2}-t_{2}\right)+\left(\gamma V T_{0} \cos \theta_{1}\right) / c \\
& =\gamma T_{0}+\left(\gamma V T_{0} \cos \theta_{1}\right) / c \\
& =\gamma T_{0}\left[1+\beta \cos \theta_{1}\right]
\end{aligned}
$$

Some Special Cases

Equation 1 represents a general case, from which one may derive expressions for some other special cases.
Assume that you are at the origin of S_{1}, what the measured frequency of the source would be:

1- If the source of light were moving directly away from you:
In this case $\theta_{1}=0$, hence;

$$
v=v_{0} \frac{\sqrt{1-v / c}}{\sqrt{1+v / c}}
$$

2- If the source of light were moving directly toward you: In this case $\theta_{1}=180^{\circ}$, hence;

$$
v=v_{0} \frac{\sqrt{1+v / c}}{\sqrt{1-v / c}}
$$

The numerator now is larger than the denominator, giving the expected increase in frequency when the source is moving toward you.

Some Special Cases

3- If the source were moving perpendicular to a line from you:
In this case (which known as the transverse Doppler effect) $\theta_{1}=90^{\circ}$, At this angle there is no relative motion toward or away from you, so the classical Doppler effect for mechanical waves would give $v=v_{0}$.
However, the same is not true for electromagnetic waves. With $\theta_{1}=90^{\circ}$, Eq. (1) becomes;

$$
v=v_{0} \sqrt{1-v^{2} / c^{2}}=v_{0} / \gamma
$$

The frequency decreases for this relativistic transverse Doppler effect.
So...
Doppler shifts in the frequencies of electromagnetic waves occur not only for relative motion toward or away from an observer, but also for transverse motion.

Astronomical Doppler effect

According to the Doppler Effect, the radiation emitted by an object moving toward an observer is squeezed; its frequency appears to increase and is therefore said to be blueshifted. In contrast, the radiation emitted by an object moving away is stretched or redshifted.
Blueshifts and redshifts exhibited by stars, galaxies and gas clouds indicate their motions with respect to the observer.

Astronomical Doppler effect

Redshift of spectral lines in the optical spectrum of a supercluster of distant galaxies (right), as compared to that of the Sun (left).

Length Contraction

If you want to measure the length of a penguin while it is moving, you must mark the positions of its front and back simultaneously (in your reference frame), as in (a), rather than at different times, as in (b).

Applying the Lorentz transformations to our two distances, we obtain;

$$
x_{2}=\gamma\left(x_{1}-v t_{1}\right) \quad \text { and } \quad x_{2}{ }^{`}=\gamma\left(x_{1}{ }^{`}-v t_{1}\right)
$$

Subtracting, we obtain;

$$
\left(x_{2} ` x_{2}\right)=\gamma\left(x_{1} ` x_{1}\right)
$$

Note that $\left(x_{2}-x_{2}\right)$ is the length as measured in S_{2}. Since the object is at rest with respect to S_{2}, let's call this length L_{o}. This gives us

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}=\frac{L_{0}}{\gamma}
$$

Length Contraction

$>$ Because the Lorentz factor γ is always greater than unity, then L is always less than L_{o}.
I.e. The relative motion causes a length contraction.
$>$ Because γ increases with speed v, the length contraction also increases with v.

Because $y_{2}=y_{1}$ and $z_{2}=z_{1}$; Length contraction occurs only along the direction of the relative motion.

Time Dilation

Suppose we travel inside a spaceship and watch a light clock. We will see the path of the light in simple up-and-down motion.
If, instead, we stand at some relative rest position and observe the spaceship passing us by 0.5 c . Because the light flash keeps up with the horizontally moving light clock, we will see the flash following a diagonal path.
I.e. according to us the flash travels a longer distance than it does in the reference frame of an observer riding with the ship.

Since the speed of light is the same in all reference frames (Einstein's second postulate), the flash must travel for a longer time between the mirrors in our frame than in the reference frame of an observer on board.

This stretching out of time is called time dilation.

Time Dilation

$$
\begin{aligned}
& \Delta t_{0}=\frac{2 D}{c} \\
& \Delta t=\frac{2 L}{c} \\
& L=\sqrt{\left(\frac{1}{2} v \Delta t\right)^{2}+D^{2}}
\end{aligned}
$$

Time Dilation

Some numerical values:

$>$ Assume that $v=0.5 \mathrm{c}$,then $\gamma=1.15$, so $T=1.15 T_{0}$.This means that if we viewed a clock on a spaceship traveling at half the speed of light, we would see the second hand take 1.15 minutes to make a revolution, whereas if the spaceship were at rest, we would see it take 1 minute.
$>$ If the spaceship passes us at 87% the speed of light, $\mathrm{g}=2$; and $\mathrm{T}=2 \mathrm{~T}_{0}$. We would measure time events on the spaceship taking twice the usual intervals. i.e. the hands of a clock on the ship would turn only half as fast as those on our own clock.

$\mathrm{v}=0$

$>$ If it were possible to make a clock fly by us at the speed of light, the clock would not appear to be running at all. We would measure the interval between ticks to be infinite.
$>$ Time dilation has been confirmed in the laboratory countless times with particle accelerators. The lifetimes of fast-moving radioactive particles increase as the speed goes up, and the amount of increase is just what Einstein's equation predicts.

Lorentz Velocity Transformations

Suppose we wish to use the Lorentz transformation equations to compare the velocities that two observers in different inertial reference frames S_{1} and S_{2} would measure for the same moving particle.
Let S_{2} moves with velocity v relative to S_{1}, and there is a particle in S_{1} moving with constant velocity $v_{1 x}$ parallel to the x -axis. If the particle position is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{Z}_{1}\right)$ at the instant t_{1}, then;
Lorentz coordinate transformations
Differentials of those equations

$$
\begin{aligned}
& x_{2}=\gamma\left(x_{1}-v t_{1}\right) \\
& y_{2}=y_{1}, \quad z_{2}=z_{1}
\end{aligned} \quad \longleftrightarrow \quad d x_{2}=\gamma\left(d x_{1}-v d t_{1}\right) .
$$

Dividing $d x_{2}, d y_{2}$ and $d z_{2}$ by $d t_{2}$ to obtain the velocity components gives;
$d x_{2}=\gamma\left(d x_{1}-v d t_{1}\right)$
$d y_{2}=d y_{1}, \quad d z_{2}=d z_{1}$ $d t_{2}=\gamma\left(d t_{1}-\frac{v}{c^{2}} d x_{1}\right)$

$$
v_{2 x}=\square=\frac{\left(d x_{1}-v d t_{1}\right) / d t_{1}}{\left(d t_{1}-v / c^{2} d x_{1}\right) / d t_{1}}
$$

Hence;

$$
v_{2 x}=\frac{v_{1 x}-v}{1-v_{1 x} \cdot v / c^{2}}
$$

Similarly we can find that;

$$
\begin{aligned}
& v_{2 y}=\frac{v_{1 y}}{\gamma\left[1-v_{1 x} \cdot v / c^{2}\right]} \\
& v_{2 z}=\frac{v_{1 z}}{\gamma\left[1-v_{1 x} \cdot v / c^{2}\right]}
\end{aligned}
$$

Using Lorntz velocity transformations No speed could be greater than c.

Example (1)
Imagine that you are standing between two space-ships moving away from you. One space-ship moves to the left with a speed of $0.75 c$ (relative to you) and the other one moves to the right also with a speed of $0.75 c$ (relative to you).
At what speed will each space-ship see the other moving away?
In classical Newtonian mechanics, two different velocities $\boldsymbol{v} \mathbf{1}$ and $\boldsymbol{v} \mathbf{2}$ are added together by the formula

$$
v_{2 x}=v_{1 x}-v
$$

So, can the speed we see be ;

$$
-0.75 c-0.75 c=-1.5 c \text { ?? }
$$

No,
the speed cannot, of course, be faster than the speed of light c.

However, in special relativity, the velocities are added together as

$$
v_{2 x}=\frac{v_{1 x}-v}{1-v_{1 x} . v / c^{2}}=\frac{-0.75 c-0.75 c}{1-(-0.75 \times 0.75) c^{2} / c^{2}}
$$

Hence, their relative speed will be $0.96 \boldsymbol{c}$.

Example (2)

Two subatomic particles moving at 0.99 c and 0.98 c in a laboratory collide head-on. What was their relative velocity?

Using Lorntz velocity transformations

$$
v_{2 x}=\frac{v_{1 x}-v}{1-v_{1 x} \cdot v / c^{2}} \quad=\frac{-0.98 c-0.99 c}{1-(-0.98 \times 0.99) c^{2} / c^{2}}
$$

Hence, their relative speed will be $0.9999 c$.
Even if the head-on collision had been between light beams, Their relative speed will be;

$$
=\left|\frac{-c-c}{1-(-1) c^{2} / c^{2}}\right|=\left|\frac{-2 c}{2}\right|=c
$$

In classical physics, $c+c=2 c$, but in special relativity, "c $+\boldsymbol{c}=\boldsymbol{c}$ ".

Relativistic Mass \& Momentum

In classical physics when two bodies collide together, the total mass, energy and momentum before and after the collision are equal.
Let us apply conservation laws to viewers from two different inertial reference frames S_{1} and S_{2}.

If someone in S_{1} throws a ball with mass m_{0} to make an elastic collision with the ground, then the conservation law of momentum in his frame requires that

$$
\begin{aligned}
& \Delta P_{1 x}=0 \\
& \Delta P_{1 y}=m_{0} v_{1 y f}-\left(-m_{0} v_{1 y i}\right)=2 m_{0} v_{1 y}
\end{aligned}
$$

For an observer in S_{2} the conservation law of momentum will requires that:

$$
\begin{aligned}
& \Delta P_{2 x}=m v_{2 x f}-\left(m v_{2 x i}\right)=0 \\
& \Delta P_{2 y}=m v_{2 y f}-\left(-m v_{2 y i}\right)=2 m v_{2 y}
\end{aligned}
$$

Using Lorentz coordinate transformations

$$
\begin{aligned}
& v_{2 y}=\frac{v_{1 y}}{\gamma\left[1-v_{1 x} . v / c^{2}\right]} \quad \begin{array}{l}
\text { Recall: } \\
v_{l x}=0
\end{array} \\
& \Delta P_{2 y}=2 m v_{2 y}=2 m v_{1 y} \sqrt{1-v^{2} / c^{2}}
\end{aligned}
$$

But the principle of relativity demands that the laws of physics are the same in all inertial reference frames. Hence;

$$
\begin{aligned}
\Delta P_{1 y} & =\Delta P_{2 y} \\
2 m_{0} v_{1 y} & =2 m v_{1 y} \sqrt{1-v^{2} / c^{2}}
\end{aligned}
$$

Or;

$$
m=m_{0} / \sqrt{1-v^{2} / c^{2}}=\gamma m_{0}
$$

This is the relativistic mass transformation.
Since $p=m v$,
the relativistic linear momentum can be written as;

$$
p=m_{0} v / \sqrt{1-v^{2} / c^{2}}=\gamma m_{0} v
$$

Notes:

1- If $v \ll \mathrm{c}$ then m is effectively equal to the rest mass m_{0} (the classical limit). When we refer to the mass of an electron as $9.1 \times 10^{-31} \mathrm{~kg}$ we mean its rest mass.

2- As the velocity of a body increases the relativistic mass becomes significantly greater than the rest mass. The relativistic mass of a body traveling at about 0.99 c is roughly seven times its rest mass.

3- As v $\square \mathrm{c}$, the mass \square infinity.
This huge increase in inertia makes it impossible to accelerate bodies of non-zero rest mass up to the velocity of light.

Relativistic Force

We can use Newton's second law to define force by the relation $F=d p / d t$. So we have;

$$
\boldsymbol{F}=\frac{d}{d t} m v=m \boldsymbol{a}+\boldsymbol{v} \frac{d m}{d t}
$$

If the force is perpendicular to the velocity, the force can't do any work on the particle, so the speed won't change. This happens in uniform circular motion. The direction of v changes, but the magnitude of v doesn't.

Therefore m doesn't change and $\mathbf{d m} / \mathbf{d t}=\mathbf{0}$. Substituting for $\mathrm{m}=\gamma \mathrm{m}_{0}$, we have

$$
F_{\perp}=\gamma m_{0} a
$$

However, if the force is parallel to the velocity, the particle's speed and mass will change. Then;

$$
\frac{d m}{d t}=\frac{d}{d t} \frac{m_{0}}{\left(1-v^{2} / c^{2}\right)^{1 / 2}}=\frac{m_{0}}{\left(1-v^{2} / c^{2}\right)^{3 / 2}} \frac{v}{c^{2}} \frac{d v}{d t}
$$

and;

$$
F_{\|}=\gamma^{3} m_{0} a
$$

Notes:

1- $F_{\|}$is much larger than F_{\perp}

2- $\quad F_{\|}$increases rapidly as v gets close to c .

To approach c we need an infinite force to accelerate an infinite mass.

Relativistic Energy

What is the expression of $K E$ in relativistic physics?
Let's start an object from rest with a net external force F in the (+ve) x direction. Then the work done by F will be stored in the form of kinetic energy.

That is,

$$
\begin{aligned}
& \text { is, } K E=\int F_{\|} d x=\int_{0}^{v}\left(m_{0}\left(1-v^{2} / c^{2}\right)^{-3 / 2} v \frac{d v}{d x} d x\right. \\
& \text { integrates to } \\
& K E=m_{0} c^{2}\left(1-v^{2} / c^{2}\right)^{-1 / 2}-m_{0} c^{2}=\gamma m_{0} c^{2}-m_{0} c^{2}
\end{aligned}
$$

or most simply;

$$
\begin{equation*}
K E=m c^{2}-m_{0} c^{2}=\Delta m c^{2} \tag{1}
\end{equation*}
$$

where $\Delta m=m-m_{0}$ is the relativistic mass increase.
Suppose a body with a rest energy of E_{0} undergoes a work that increases its $K E$, then its total energy will be $E=E_{0}+K E$, or;

$$
\begin{equation*}
K E=E-E_{0} \tag{2}
\end{equation*}
$$

Equivalence of Mass and Energy

Comparing (1) \& (2), we can say that:

$$
E=m c^{2} \quad \text { and } \quad E_{0}=m_{0} c^{2}
$$

This famous equation states that;

Energy and mass are just two equivalent ways of describing the same thing.

This law unified two things which appeared to be completely unrelated in the old model (classical physics).
\square The decrease of mass in the sun by the process of thermonuclear fusion bathes the solar system with radiant energy. There is sufficient hydrogen fuel for fusion to last another 5 billion years !!
\square When we strike a match, phosphorus atoms in the match head rearrange themselves and combine with oxygen in the air to form new molecules. The resulting molecules have very slightly less mass than the separate phosphorus and oxygen molecules.
\square The equation $E=m c^{2}$ is not restricted to chemical and nuclear reactions. It applies to ALL forms of energy and mass. For example;
-The filament of a light bulb energized with electricity has more mass than when it is turned off.

- A hot cup of tea has more mass than the same cup of tea when cold.
- A wound-up spring clock has more mass than the same clock when unwound.

But these examples involve incredibly small changes in mass-too small to be measured.
\square Nuclear energy involves larger changes in energy, because the rest mass of nuclei converted into kinetic energy.

1 gram of mass ~ energy released in an atomic bomb

9

The first evidence for the conversion of radiant energy to mass was provided in 1932 by the American physicist Carl Anderson, who discovered the positron by the track it left in a cloud chamber.
\square The positron is the antiparticle of the electron, equal in mass and spin to the electron but opposite in charge.
\square When a photon comes close to an atomic nucleus, it can create an electron and a positron together as a pair, thus creating mass. The created particles fly apart.
\square The positron is not part of normal matter because it lives such a short time in the presence of matter. As soon as it encounters an electron, the pair is annihilated, sending out two gamma rays in the process. Then mass is converted back to radiant energy.

Electron

Using the relation of the relativistic mass along with $E=m c^{2}$, we obtain

$$
\begin{equation*}
E=\gamma m_{0} c^{2}=\gamma E_{0} \tag{4}
\end{equation*}
$$

Equation (4) as other relativistic expressions shows that for objects with a nonzero rest mass, \boldsymbol{c} is the upper limiting speed. This doesn't forbid the existence of particles that have zero rest mass and which can only move at $v=c$.
Again starting with $\mathrm{m}=\mathrm{m}_{0} /\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)^{1 / 2}$, if we square both sides and rearrange terms recognizing $m v$ as the magnitude of the linear momentum p, we get;

$$
\begin{equation*}
E^{2}=p^{2} c^{2}+E_{0}^{2} \tag{5}
\end{equation*}
$$

(a)

(b)

(c)

The Unit Conversions

