
It is a phenomenon named after Austrian physicist Christian 
Doppler who proposed it in 1842 . 

It is the change in the measured frequency of a source, due to 

the motion of the source (and/or) the observer.  

The Doppler effect for sound waves travel in a medium, 

depends on two velocities: the source velocity and the observer 

velocity with respect to that medium.  

However, light and other electromagnetic waves require no 

medium. Therefore the Doppler effect for electro-magnetic 

waves depends on only one velocity: the relative velocity 

between the source and the observer. 

S1 S2 
v 

q1 

Suppose that there is a source of  frequency uo (and 

corresponding period To) at rest on the Y axis in S2 . 

The Doppler Effect 
What is Doppler Effect?  

And the source is moving with 

constant velocity v along the 

x-axis .  

Making an angle q1 between 

the source position vector & 

+ x-axis.  
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If we are at rest at the origin of S1, we would measure the 

frequency of the source to be 

In this relation, uo is measured in a coordinate system at rest with 

respect to the source (zero relative speed, thus the subscript zero). 

The observers measure the frequency u, the relative speed v, and 

the angle q1 between the source position vector r1 & + x-axis . 

1 
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v 

q1 

x1`-x1 

At  S2  ; 

x2 = 0  &  x2` = 0 

T0 = t2`-t2 

At  S1  ; 

x1 = vt2  &  x1` = vt2` 

T = (t1`-t1) + (r1`-r1)/c 

 But ; 

r1`-r1  = (x1` - x1 ) cosq1= vT0 cosq1 

q1 

Hence; 

T =  (t2`-t2) + (vT0 cosq1)/c 

    =  T0+ (vT0 cosq1)/c 

    =  T0[1+ cosq1] 
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1- If the source of light were moving directly away from 

you: 

In this case q1 = 0 , hence; 

 

Some Special Cases 
Equation 1 represents a general case, from which one may  

derive expressions for some other special cases. 

Assume that you are at the origin of S1, what the measured 

frequency of the source would be: 

2- If the source of light were moving directly toward you: 

In this case q1 = 180o , hence; 
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The numerator now is larger than the denominator, giving the 

expected increase in frequency when the source is moving 

toward you. 



Some Special Cases 
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3- If the source were moving perpendicular to a line from 

you: 

In this case (which known as the transverse Doppler effect)  

q1 = 90o , At this angle there is no relative motion toward or 

away from you, so the classical Doppler effect for 

mechanical waves would give u  uo. 

However, the same is not true for electromagnetic waves. 

With q1 = 90o , Eq. (1) becomes; 

 

The frequency decreases for this relativistic transverse 

Doppler effect.  

So… 

Doppler shifts in the frequencies of electromagnetic waves 

occur not only for relative motion toward or away from an 

observer, but also for transverse motion. 



Astronomical Doppler effect 

According to the Doppler Effect, the radiation emitted by an 

object moving toward an observer is squeezed; its frequency 

appears to increase and is therefore said to be blueshifted. 

In contrast, the radiation emitted by an object moving away 

is stretched or redshifted.  

Blueshifts and 

redshifts exhibited by 

stars, galaxies and gas 

clouds indicate their 

motions with respect 

to the observer. 



Redshift of spectral lines in the optical spectrum of a 

supercluster of distant galaxies (right), as compared to 

that of the Sun (left). 

Astronomical Doppler effect 

http://upload.wikimedia.org/wikipedia/commons/1/14/Redshift.png


Length Contraction 

If you want to measure the length of a penguin while it is 

moving, you must mark the positions of its front and back 

simultaneously (in your reference frame), as in (a), rather 

than at different times, as in (b). 

  x1 (t1)     x1` (t1) 

 
x1 (t1)                     x1` (t1` ) 

 

t1 

 
t1` 

 

(a)                                                         (b) 

Applying the Lorentz transformations to our two distances, we 

obtain; 
x2 =  (x1 – vt1)          and         x2` =  (x1` – vt1)  

Subtracting, we obtain; 

     (x2`- x2) =  (x1`- x1) 


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Note that (x2`- x2) is the length as measured in S2 . Since the 

object is at rest with respect to S2, let's call this length Lo. This 

gives us 



 Because the Lorentz factor  is always greater than unity, 

then L is always less than Lo.  

I.e. The relative motion causes a length contraction.  

Length Contraction 

 Because  increases with speed v, the length contraction also 

increases with v. 

Because y2 = y1 and z2 = z1;  

Length contraction occurs only along the direction of 

the relative motion.  



Suppose we travel inside a spaceship and watch a light clock. 

We will see the path of the light in simple up-and-down 

motion.  

If, instead, we stand at some relative rest position and observe 

the spaceship passing us by 0.5c . Because the light flash keeps 

up with the horizontally moving light clock, we will see the 

flash following a diagonal path.  

Time Dilation 

I.e.  according to us the flash travels a longer distance  

than  it does in the reference frame of an observer riding 

with the ship.  

Since the speed of light is the same in all reference frames 

(Einstein's second postulate), the flash must travel for a 

longer time between the mirrors in our frame than in the 

reference frame of an observer on board.  

This stretching out of time is called time dilation. 

Time Dilation.mov
Time Dilation - Albert Einstein and the Theory of Relativity.flv


Time Dilation 
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Some numerical values: 
Time Dilation 

 Assume that  v = 0.5c ,then  = 1.15, so T = 1.15 T0  .This means 

that if we viewed a clock on a spaceship traveling at half the speed 

of light, we would see the second hand take 1.15 minutes to make a 

revolution, whereas if the spaceship were at rest, we would see it 

take 1 minute.  

 If the spaceship passes us at 87% the 

speed of light, g  = 2; and T = 2 T0 . We 

would measure time events on the 

spaceship taking twice the usual 

intervals. i.e. the hands of a clock on the 

ship would turn only half as fast as those 

on our own clock.  

 Time dilation has been confirmed in the laboratory 

countless times with particle accelerators. The lifetimes of 

fast-moving radioactive particles increase as the speed goes 

up, and the amount of increase is just what Einstein's equation 

predicts. 

 If it were possible to make a clock fly by us at the speed of light, the 

clock would not appear to be running at all. We would measure the 

interval between ticks to be infinite.  



Lorentz Velocity Transformations 
Suppose we wish to use the Lorentz transformation 

equations to compare the velocities that two observers in 

different inertial reference frames S1 and S2 would measure for 

the same moving particle. 
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Let S2  moves with velocity v relative to S1, and there is a 

particle in S1 moving with constant velocity v1x parallel to the 

x-axis. If the particle position is ( x1,y1,z1 ) at the instant t1 , 

then; 
Differentials of those 

equations     
Lorentz coordinate transformations 

Dividing dx2 , dy2 and dz2 by dt2 to obtain the velocity 

components gives; 
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Hence; 

Similarly we  can find that; 

Using Lorntz velocity transformations No speed could be 

greater than c. 



Hence, their relative speed will be 0.96 c . 

However, in special relativity, the velocities are added together as 

In classical Newtonian mechanics, two 

different velocities v1 and  v2 are added 

together by the formula 

Example (1) 
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Imagine that you are standing between two space-ships moving 

away from you. One space-ship moves to the left with a speed 

of 0.75 c (relative to you) and the other one moves to the right 

also with a speed of 0.75 c (relative to you). 

At what speed will each space-ship see the other moving away?  

So, can the speed we see be ;  

               -0.75 c - 0.75 c = -1.5 c  ??  

 No,  

the speed cannot, of course, be faster than the speed of light 

c. 
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S2 

Vx2 =? 

 

S1 

Vx1 =-0.75c 

 



Two subatomic particles moving at 0.99c and 0.98c in a 

laboratory collide head-on. What was their relative velocity? 

Example (2) 

S2 

Vx2 =? 

 

S1 

Vx1 =-0.98c 

 

v =0.99c 

 

S1 

0.98c 

 
0.99c 

 

Using Lorntz velocity transformations  

Hence, their relative speed will be 0.9999 c . 
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Even if the head-on collision had been between light beams,  

Their relative speed will be; 
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 In classical physics, c + c = 2c,  

but in special relativity, "c + c = c".  



Relativistic Mass & Momentum  
In classical physics when two bodies collide together, the total 

mass, energy and momentum before and after the collision 

are equal.  

Let us apply conservation laws to viewers from two different 

inertial reference frames S1 and S2.   

If someone in S1 throws a ball  

with mass m0 to make an elastic  

collision with the ground, then the  

conservation law of momentum  

in his frame requires that  
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For an observer in S2   the conservation law of 

momentum will requires that: 
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Using Lorentz coordinate transformations 
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Recall: 

v1x=0 

But the principle of relativity demands that the laws of 

physics are the same in all inertial reference frames. Hence; 
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This is the relativistic mass transformation. 

Or; 
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Since p = mv  ,  

the relativistic linear momentum can be written as; 

vmcvvmp 0
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1- If v << c then m is effectively equal to the rest mass m0 (the 

classical limit). When we refer to the mass of an electron as 

9.1×l0-31 kg we mean its rest mass. 

3- As v            c ,  the mass              infinity.  

This huge increase in inertia makes it impossible to accelerate 

bodies of non-zero rest mass up to the velocity of light. 

Notes: 

2- As the velocity of a body increases the relativistic mass 

becomes significantly greater than the rest mass. The 

relativistic mass of a body traveling at about 0.99c is roughly 

seven times its rest mass.  



We can use Newton's second law to define force by the 

relation F = dp/dt. So we have; 
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If the force is perpendicular to the velocity, the force can't do 

any work on the particle, so the speed won't change. This 

happens in uniform circular motion. The direction of v 

changes, but the magnitude of v doesn't.  

Relativistic Force 

Therefore m doesn't change and dm/dt=0. Substituting for 

m = m0, we have 

amF 0

However, if the force is parallel to the velocity, the particle’s 

speed and mass will change. Then; 
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1-    F
F is much larger than  

F2-     increases rapidly as v gets close to c. 

 To approach c we need an infinite force to accelerate an 

infinite mass. 

Notes: 



Relativistic Energy 
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What is the expression of KE in relativistic physics?  

Let's start an object from rest with a net external force F in the 

(+ve) x direction. Then the work done by F will be stored in the 

form of  kinetic energy. 

which integrates to 

That is, 
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or most simply; 

Suppose a body with a rest energy of E0 undergoes a work that 

increases its KE, then its total energy will be  E = E0+KE , or; 

0EEKE 

(1) 

(2) 
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where m = m – m0 is the relativistic mass increase. 



Comparing (1) & (2), we can say that: 

This famous equation states that;  
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Energy and mass are just two equivalent ways 
of describing the same thing. 

Equivalence of Mass and Energy 

 This law unified two things which appeared to be completely 

unrelated in the old model (classical physics). 

 The decrease of mass in the sun by the process of 

thermonuclear fusion bathes the solar system with radiant 

energy. There is sufficient hydrogen fuel for fusion to last 

another 5 billion years !!  

 When we strike a match, phosphorus atoms in the match 

head rearrange themselves and combine with oxygen in the 

air to form new molecules. The resulting molecules have 

very slightly less mass than the separate phosphorus and 

oxygen molecules. 



•The filament of a light bulb energized with electricity has 

more mass than when it is turned off. 

•A hot cup of tea has more mass than the same cup of tea 

when cold.  

•A wound-up spring clock has more mass than the same clock 

when unwound.  

But these examples involve incredibly small changes 

in mass-too small to be measured.  

 The equation E = mc2 is not restricted to chemical and 

nuclear reactions. It applies to ALL forms of energy and mass. 

For example; 

 Nuclear energy involves larger changes in energy, because the 

rest mass of nuclei converted into kinetic energy.  

 1 gram of mass ~ energy 

released in an atomic bomb 



 

 

 

High 
energy 
photon 

Electron 

Positron Electron 

Gamma 
ray + 

 The positron is not part of normal matter because it lives 

such a short time in the presence of matter. As soon as it 

encounters an electron, the pair is annihilated, sending out two 

gamma rays in the process. Then mass is converted back to 

radiant energy.  

 The positron is the antiparticle of the electron, equal in 

mass and spin to the electron but opposite in charge.  

 The first evidence for the conversion of radiant energy to mass 

was provided in 1932 by the American physicist Carl Anderson, 
who discovered the positron by the track it left in a cloud 

chamber.  

 When a photon comes close to an atomic nucleus, it can 

create an electron and a positron together as a pair, thus 

creating mass. The created particles fly apart. 
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Equation (4) as other relativistic expressions shows that for 

objects with a nonzero rest mass, c is the upper limiting speed.  

This doesn't forbid the existence of particles that have zero rest 

mass and which can only move at v = c.  

Again starting with m = m0/(1 - v2/c2)1/2, if we square both sides 

and rearrange terms recognizing mv as the magnitude of the 

linear momentum p, we get; 

Using the relation of the relativistic mass along with E = mc2 , 

we obtain                                                                                       

(4) 

 (5)  
2

0

222 EcpE 

Eq. (5) when v << c when v     c 



The Unit Conversions 

Since it's easier to determine the work done and thus KE in 

electron volts for charged atomic and subatomic particles, eV- 

based units are most often used as following; 

When a particle is 

described as a 1-MeV 

particle 

1-  This means that the 

kinetic energy of this 

particle is 1-MeV. 

2-  

3-  

According to (3) we can 

specify the mass units as  
eV/c2,  KeV/c2,  MeV/c2, ect 

According to (5) we can 

specify the momentum 

units as  

eV/c ,  KeV/c,  MeV/c, ect 2

0

222 EcpE 

             2mcE 


