بسم الله الرحمن الرحيم

When two ordinary surfaces are placed together, only the high points touch each other and do **cold-weld** together. These welds produce **static friction** when an applied force attempts to slide the surfaces relative to each other.

If friction were totally absent

Friction

- We could not get an automobile to go anywhere, and we could not walk or ride a bicycle.
- We could not hold a pencil, and, if we could, it would not write.
- Nails and screws would be useless, woven cloth would fall apart, and knots would untie.

(a)

static frictional force

f_s

A block rests on a tabletop, with the gravitational force \vec{F}_{g} rebalanced by a normal force \vec{F}_{N}

You exert a force \vec{F} or the block to pull it to the left. In response, a **static frictional force** \vec{f}_s directed to the right, exactly balancing your force.

As you increase \vec{F} , the magnitude of \vec{f}_s also increases and the block remains at rest.

(a)(b) No motion (c) (d)

Kinetic frictional force

k When F reaches a certain magnitude (f max), the block "breaks away" from its contact and accelerates leftward.

The frictional force that then opposes the motion is called the **kinetic frictional** force \vec{f}_k

If the body starts moving with **constant velocity** what is the magnitude of **kinetic frictional force**? $\vec{F} = \vec{f}_k$

CHECKPOINT 1 A block lies on a floor. (a) What is the magnitude of the frictional force on it from the floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does not move, what is the magnitude of the frictional force on it? (c) If the maximum value $f_{x,max}$ of the static frictional force on the block is 10 N, will the block move if the magnitude of the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the magnitude of the frictional force in part (c)?

Properties of Friction

Property 1. If the body does not move, then

$$\vec{f}_s = \vec{F}$$
 $\vec{f}_s = 0$ if $\vec{F} = 0$

Property 2. The magnitude of \vec{f}_s has a maximum value $f_{s,max}$ that is given by $f_{s,max} = \mu_s F_N$

Property 3. If the body begins to slide along the surface, the magnitude of the frictional force rapidly decreases to a value f_k given by

$$f_k = \mu_k F_N$$

where $\mu_s \& \mu_k$ are the coefficients of *static* & *kinetic* frictions respectively.

They are **dimensionless** and their values depend on the properties of the body and the surface

Surfaces	μ (static)	μ (kinetic)
Steel on steel	0.74	0.57
Glass on glass	0.94	0.40
Metal on Metal (lubricated)	0.15	0.06
Ice on ice	0.10	0.03
Teflon on Teflon	0.04	0.04
Tire on concrete	1.00	0.80
Tire on wet road	0.60	0.40
Tire on snow	0.30	0.20

Sample Problem 6-1

The record for the longest skid marks on a public road was reportedly set in 1960 by a Jaguar on the M1 highway in England (Fig. 6-3a) — the marks were 290 m long! Assuming that $\mu_k = 0.60$ and the car's acceleration was constant during the braking, how fast was the car going when the wheels became locked?

Sample Problem 6-2

A block of mass m = 3.0 kg slides along a floor while a force **F** of magnitude I2.0 N is applied to it at an upward angle θ =20. The coefficient of kinetic friction between the block and the floor is μ_{k} = 0.40. What is the acceleration of the block?

$$\vec{F}_{y,net} = 0 \longrightarrow F_N = mg - F \sin \theta.$$

$$\vec{F}_{x,net} = ma \longrightarrow F \cos \theta - \mu_k F_N = ma.$$

$$\vec{F}_{x,net} = ma \longrightarrow F \cos \theta - \mu_k F_N = ma.$$

$$\vec{F}_{x,net} = \frac{F}{m} \cos \theta - \mu_k \left(g - \frac{F}{m} \sin \theta\right).$$

$$\vec{a} = 0.38 \ m/s^2$$

E.

AF

Motion in Two And Three Dimensions

Recall:

uniform circular Motion A particle is in **uniform circular motion** if it moves on a circular path of radius **r** with constant speed **v**.

Even though **the speed** is **constant**, **the velocity** is **not**. The particle has an acceleration called "**centripetal**" acceleration.

à

Centripetal Acceleration

Its vector points toward the center of the circular path, thus the name "centripetal."
 Its magnitude *a* is constant and given by the equation :

$$a=\frac{v^2}{r}$$
.

If we apply Newton's second law to analyze the uniform circular motion we conclude that:

Since there is an *acceleration* \implies there must be a *force* produced that acceleration:

Its magnitude:

$$F = ma = m\frac{v^2}{r}$$

Its direction: toward the center. So it is called a Centripetal Force.

It is **not** a new kind of force. It is simply the **net force** that points from the rotating body to the rotation center . Depending on the situation the **centripetal force** could be *friction, tension, or gravity*.

Different forms of the centripetal Force

the directions of your acceleration \vec{a} and the normal force \vec{F}_N on you (from the always upright seat) as you pass through (a) the highest point and (b) the lowest point of the ride?

Sample Problem 6-2

Igor is a cosmonaut on the International Space Station, in a circular orbit around Earth, at an altitude h of 520 km and with a constant speed v of 7.6 km/s. Igor's mass m is 79 kg.

(a) What is his acceleration?

(b) What force does Earth exert on Igor?