## 



# Motion in Two And Three Dimensions 

Position Vector :

To locate an object means to find it's position vector $\vec{r}$, which is a vector that extends from a reference point (usually the origin)to the particle.

$$
\text { For example: } \vec{r}=(-3 \hat{i}+2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) m
$$

## displacement

Vector :
If the position vector changes from $\overrightarrow{\boldsymbol{r}}_{1}$, to $\vec{r}_{2}$, during a certain time interval, then the particle's displacement vector is

$$
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1} .
$$



$$
\Delta \vec{r}=\left(x_{2}-x_{1}\right) \hat{\mathrm{i}}+\left(y_{2}-y_{1}\right) \hat{\mathrm{j}}+\left(z_{2}-z_{1}\right) \hat{\mathrm{k}}=\Delta x \hat{\mathrm{i}}+\Delta \hat{\mathrm{j}}+\Delta z \hat{\mathrm{k}}
$$

where:

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1} \\
& \Delta y=y_{2}-y_{1} \\
& \Delta z=z_{2}-z_{1}
\end{aligned}
$$

## Motion in Two And Three Dimensions

## Sample Problem 4-1

In Fig. 4-2, the position vector for a particle initially is

$$
\vec{r}_{1}=(-3.0 \mathrm{~m}) \hat{\mathrm{i}}+(2.0 \mathrm{~m}) \hat{\mathrm{j}}+(5.0 \mathrm{~m}) \hat{\mathrm{k}}
$$

and then later is

$$
\vec{r}_{2}=(9.0 \mathrm{~m}) \hat{\mathrm{i}}+(2.0 \mathrm{~m}) \hat{\mathrm{j}}+(8.0 \mathrm{~m}) \hat{\mathrm{k}} .
$$

What is the particle's displacement $\Delta \vec{r}$ from $\vec{r}_{1}$ to $\vec{r}_{2}$ ?


FIG. 4-2 The displacement $\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}$ extends from the head of the initial position vector $\vec{r}_{1}$ to the head of the later position vector $\vec{r}_{2}$

# Motion in Two And Three Dimensions 

Average velocity

$\vec{v}$ avg

The ratio of displacement that occurs during a particular time interval to that interval

$$
\begin{gathered}
\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t}=\frac{\vec{r}_{2}-\vec{r}_{1}}{t_{2}-t_{1}} \\
\vec{v}_{\text {avg }}=\frac{\Delta x}{\Delta t} \hat{i}+\frac{\Delta y}{\Delta t} \hat{j}+\frac{\Delta z}{\Delta t} \hat{k}
\end{gathered}
$$

It is the derivative of $\vec{r}$ with respect to $t$.

## Instantaneous

 velocity $\vec{v}$$$
\vec{v}=\frac{d \vec{r}}{d t} \quad \text { But, } \quad \vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}
$$

$$
\text { Then, } \vec{v}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k} \text { or } \vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}
$$

## Motion in Two And Three Dimensions



The direction of the instantaneous velocity $\vec{v}$ of a particle is always tangent to the particle's path at the particle's position.

CHECKPOINT 1 The figure shows a circular path taken by a particle. If the instantaneous velocity of the particle is $\vec{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$, through which quadrant is the particle moving at that instant if it is traveling (a) clockwise and (b) counterclockwise around the circle? For both cases, draw $\vec{v}$ on the figure.


# Motion in Iwo And Three Dimensions 

## Sample Problem 4-2

A rabbit runs across a parking lot on which a set of coordinate axes has, strangely enough, been drawn. The coordinates (meters) of the rabbit's position as functions of time $t$ (seconds) are given by

$$
x=-0.31 t^{2}+7.2 t+28
$$

and

$$
y=0.22 t^{2}-9.1 t+30 .
$$

(a) At $t=15 \mathrm{~s}$, what is the rabbit's position vector $\vec{r}$ in unit-vector notation and in magnitude-angle notation?


# Motion in Two And Three Dimensions 

## Sample Problem 4-3

For the rabbit in Sample Problem 4-2 find the velocity $\vec{v}$ at time $t=15 \mathrm{~s}$.


# Motion in Two And Three Dimensions 

Average acceleration

$$
\overrightarrow{\boldsymbol{a}}_{\mathrm{avg}}
$$

Instantaneous It is the derivative of $\vec{v}$ with respect to $t$. acceleration $\overrightarrow{\boldsymbol{a}}$

$$
\vec{a}=\frac{d \vec{v}}{d t} \quad \text { But, } \quad \vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}
$$

Then,

$$
\vec{a}=\frac{d v_{x}}{d t} \hat{i}+\frac{d v_{y}}{d t} \hat{j}+\frac{d v_{z}}{d t} \hat{k}
$$

or

$$
\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}
$$

# Motion in Iwo And Three Dimensions 

## Sample Problem 4-4

A rabbit runs across a parking lot on which a set of coordinate axes has, strangely enough, been drawn. The coordinates (meters) of the rabbit's position as functions of time $t$ (seconds) are given by

$$
\begin{aligned}
& x=-0.31 t^{2}+7.2 t+28 \\
& y=0.22 t^{2}-9.1 t+30 .
\end{aligned}
$$

and

Find the acceleration $\vec{a}$ at $\mathbf{t}=\mathbf{1 5} \mathrm{s}$.


# Motion in Two And Three Dimensions 

## Sample Problem 4-5

A particle with velocity $\vec{v}_{0}=-2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}$ (in meters per second) at $t=0$ undergoes a constant acceleration $\vec{a}$ of magnitude $a=3.0 \mathrm{~m} / \mathrm{s}^{2}$ at an angle $\theta=130^{\circ}$ from the positive direction of the $x$ axis. What is the particle's velocity $\vec{v}$ at $t=5.0 \mathrm{~s}$ ?

## Motion in Two And Three Dimensions

Projectile Motion

The motion of an object in a vertical plane under the influence of gravitational force is known as "projectile motion."

The projectile is launched with an initial velocity $\overrightarrow{v_{0}}$
From the fig. we can find that the horizontal and vertical velocity components are:

$$
v_{0 x}=v_{0} \cos \theta_{0} \quad v_{0 y}=v_{0} \sin \theta_{0}
$$

Projectile motion can be divided into a horizontal and a vertical motion along the $x$ - and $y$-axes, respectively.

These two motions are independent of each other. Motion along the $x$-axis has $a_{y}$ $=0$. Motion along the $y$-axis has uniform acceleration $a_{y}=-g$.

# Motion in Two And Three Dimensions 

the particle's equations of motion along the horizontal x axis and vertical y axis are

$$
\begin{aligned}
& a_{y}=-g \\
& v_{y}=v_{0 y}-g t \\
& y=v_{0 y} t-\frac{1}{2} g t^{2} \\
& x-x_{0}=\left(v_{0} \cos \theta_{0}\right) t, \\
& y-y_{0}=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}, \\
& v_{y}=v_{0} \sin \theta_{0}-g t, \\
& v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) .
\end{aligned}
$$

# Motion in Two And Three Dimensions 

## Maximum $\vec{v}=v_{x}$ <br> Height H $\quad v_{y}=0$ <br> $$
H=\frac{\left(v_{0} \sin \theta_{0}\right)^{2}}{2 g}
$$

The Range $\mathbf{R} \quad x=R$

$$
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} .
$$

$$
\theta_{0}=45^{0} \rightarrow R_{\max }=\frac{v_{0}^{2}}{g}
$$



# Motion in Two And Three Dimensions 

## Sample Problem 4-7

Figure $4-16$ shows a pirate ship 560 m from a fort defending a harbor entrance. A defense cannon, located at sea level, fires balls at initial speed $v_{0}=82 \mathrm{~m} / \mathrm{s}$.
(a) At what angle $\theta_{0}$ from the horizontal must a ball be fired to hit the ship?
(b) What is the maximum range of the cannonballs?


## Motion in Two And Three Dimensions



## Problem 4-21

A projectile is fired horizontally from a gun that is 45.0 m above flat ground, emerging from the gun with a speed of $250 \mathrm{~m} / \mathrm{s}$. (a) How long does the projectile remain in the air?

$$
\begin{gathered}
y=v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2} \\
-45=250 \sin (0)-\frac{1}{2} 9.8 t^{2} \\
t^{2}=\frac{45}{4.9}=9.18 \Rightarrow t=3.03 s
\end{gathered}
$$

$$
\begin{aligned}
x-x_{0} & =\left(v_{0} \cos \theta_{0}\right) t, \\
\hline y-y_{0} & =\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}, \\
v_{y} & =v_{0} \sin \theta_{0}-g t, \\
v_{y}^{2} & =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) .
\end{aligned}
$$



## Motion in Two And Three Dimensions



## Problem 4-21

(b) At what horizontal distance from the firing point does it strike the ground?

$$
\begin{aligned}
& x=v_{0} \cos \theta_{0} t \\
& x=250 \cos (0)(3.03) \\
& x=757.5 m
\end{aligned}
$$

$$
\begin{aligned}
x-x_{0} & =\left(v_{0} \cos \theta_{0}\right) t, \\
y-y_{0} & =\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}, \\
v_{y} & =v_{0} \sin \theta_{0}-g t, \\
v_{y}^{2} & =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) .
\end{aligned}
$$

(c) What is the magnitude of the vertical component of its velocity as it strikes the ground?

$$
\begin{aligned}
& \boldsymbol{v}_{\boldsymbol{y}}=\boldsymbol{v}_{\mathbf{0}} \sin \boldsymbol{\theta}_{\mathbf{0}}-\boldsymbol{g} \boldsymbol{t} \\
& v_{y}=250 \sin (0)-9.8(3.03) \\
& v_{y}=-29.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$



## Motion in Two And Three Dimensions



## Problem 4-38

You throw a ball toward a wall at speed $25.0 \mathrm{~m} / \mathrm{s}$ and at angle $\theta_{0}=40.0^{\circ}$ above the horizontal (Fig. 4-38). The wall is distance $d=22.0 \mathrm{~m}$ from the release point of the ball. (a) How far above the release point does the ball hit the wall?

The equation of the projectile path (TRAJECTORY)


FIG. 4-38 Problem 38.
$v_{y}=v_{0} \sin \theta_{0}-g t$,
$v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right)$.

$$
\begin{aligned}
& y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}} \\
& y=(\tan 40) 22-\frac{9.8(22)^{2}}{2(25 \cos 40)^{2}}=11.99 m
\end{aligned}
$$

## Motion in Two And Three Dimensions



## Problem 4-38

What are the (b) horizontal and
(c) vertical components of its velocity as it hits the wall?

$$
\begin{array}{cl}
\boldsymbol{v}_{\boldsymbol{x}}=\boldsymbol{v}_{\mathbf{0} \boldsymbol{x}} & v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) . \\
v_{x}=25 \cos (40) & v_{y}^{2}=(25 \sin 40)^{2}-2(9.8)(11.99) \\
v_{x}=19.15 \mathrm{~m} / \mathrm{s} & v_{y}^{2}=23.23 \Rightarrow v_{v}=4.82 \mathrm{~m} / \mathrm{s}
\end{array}
$$

(d) When it hits, has it passed the highest point on its trajectory?

$$
v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) .
$$

Not yet, because $v_{y}$ still positive.


## Motion in Two And Three Dimensions



## uniform

 circular MotionA particle is in uniform circular motion if it moves on a circular path of radius $r$ with constant speed $v$.

Even though the speed is constant, the velocity is not. The reason is that the direction of the velocity vector changes from point to point along the path.

The fact that the velocity changes means that the acceleration is not zero.

The period
The time $\boldsymbol{T}$ it takes to complete a full revolution is known as the "period." It is given by the equation

$$
\begin{aligned}
\text { Time } & =\frac{\text { distance }}{\text { velocity }} \\
T & =\frac{2 \pi r}{v} .
\end{aligned}
$$

## Motion in Two And Three Dimensions

tangential Velocity

The velocity in uniform circular motion has the following characteristics:

1. Its vector always tangent to the circle in the direction of motion.
2. Its magnitude $v$ is constant and given by the equation :

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
$$

Centripetal Acceleration

The acceleration in uniform circular motion has the following characteristics:

1. Its vector points toward the center of the circular path, thus the name "centripetal."
2. Its magnitude $a$ is constant and given by the equation :

$$
a=\frac{v^{2}}{r}
$$

# Motion in Two And Three Dimensions 

$$
\vec{V}=V_{x}^{\hat{i}}+V_{y} \hat{j}
$$

$$
\vec{a}=a_{x} \hat{\dot{\imath}}+a_{y} \hat{j}
$$



CHECKPOINT 5 An object moves at constant speed along a circular path in a horizontal $x y$ plane, with the center at the origin. When the object is at $x=-2 \mathrm{~m}$, its velocity is $-(4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. Give the object's (a) velocity and (b) acceleration at $y=2 \mathrm{~m}$.

# Motion in Two And Three Dimensions 

## Sample Problem 4-10

What is the magnitude of the acceleration, in $g$ units, of a pilot whose aircraft enters a horizontal circular turn with a velocity of $\vec{v}_{i}=(400 \hat{\mathrm{i}}+500 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$ and 24.0 s later leaves the turn with a velocity of $\vec{v}_{f}=(-400 \hat{\mathrm{i}}-500 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$ ?


