

Choose the correct answer:

(1) Homogeneous mixture is called:
A. An element
B. A compound
C. A solution
D. An electron
(2) What is the formula mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$?
A. $152 \mathrm{~g} / \mathrm{mol}$
B. $78 \mathrm{~g} / \mathrm{mol}$
C. $134 \mathrm{~g} / \mathrm{mol}$
D. $102 \mathrm{~g} / \mathrm{mol}$
(3) In the periodic table the horizontal rows contain elements which
A. Belong to the same family
B. Exhibit similar chemical reactions.
C. Belong to the same period
D. Are represented by same number of example
(4) If the solubility of a salt is $36.0 \mathrm{~g} / 100 \mathrm{~g}$-water, what is the minimum of water that would dissolve 51.0 g of salt?
A. 72 g
B. 142 g
C. 180 g
D. 360 g
(5) The two malor types of pure substances are
A. Compounds \& Solutions
C. Compounds \& Elements
B. Elements \& Mixtures
D. Solutions \& Elements
(6) A balloon with a volume of 8.73 L contains 0.321 moles of helium gas. What is the density of the gas?
A. $0.0368 \mathrm{~g} / \mathrm{L}$
B. $0.147 \mathrm{~g} / \mathrm{L}$
C. $0.700 \mathrm{~g} / \mathrm{L}$
D. $2.80 \mathrm{~g} / \mathrm{L}$
(7) Use the following table and choose which of the species are positively charged?

Atom or ion of element	I	II	III	IV	V	VI
Atom or ion of element (e)	6	10	18	10	28	7
Atom or ion of element (p)	6	8	17	11	30	7
Atom or ion of element (n)	6	8	18	11	36	6

A. III and V
B. II and III
C. IV and V
D. I and VI
(8) The correct value and units for the problem

$$
\frac{0.0999 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH} \mathrm{x} 5 \mathrm{~L} \mathrm{x}(23+1+16) \mathrm{g}}{1 \mathrm{~mol} \mathrm{NaOH}} \div \frac{1.2042 \times 10^{24} \mathrm{NaOH} \text { Molecules }}{6.022 \times 10^{23} \mathrm{NaOH} \text { Molecules }}=
$$

A. 40 g
B. 10 g
C. 40 L
D. 10 L
(9) The SI Base Unit for length is:
A. meter
B. kilometer
C. mile
D. foot
(10) The product of the reaction between Al and O_{2} is predicted to be
A. AIO
B. AlO_{2}
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. AlO_{4}
(11) Which is the largest mass?
A. 0.5 kg
B. 0.5 g
C. 50 g
D. 500 mg
(12) Which of the following SI prefixes express the 1×10^{-3} meter:
A. kilo
B. deci
C. centi
D. milli
(13) Express 7500 mm as picometer:
A. 7.5 pm
B. $7.5 \times 10^{6} \mathrm{pm}$
C. 7.5 pm
D. $7.5 \times 10^{12} \mathrm{pm}$
(14) The mole ratio of NaOH to I_{2} is found to be: (for the following equation)

$$
\ldots \mathrm{NaOH}(\mathrm{~s})+\ldots \mathrm{I}_{2}(I) \longrightarrow \ldots \mathrm{NaI}(\mathrm{~s})+\ldots \mathrm{NaIO}_{3}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(I)
$$

A. $2 / 1$
B. $6 / 5$
C. $5 / 1$
D. $1 / 3$
(15) The following set of data for a compound illustrates best which law?

Mg	Cl	$\mathrm{Mg} / \mathrm{Cl}$
24.0 g	71.0 g	0.338
12.0 g	35.5 g	0.338
ultiple proportions		B. Definite composition
nservation of mass		D. Dulong and Petit

(16) The sulfide ion, $\mathrm{S}^{\mathbf{2 -}}$ has ($\mathrm{p}=$ protons and $\mathrm{e}=$ electrons)
A. 16 p and 18 e
B. 16 p and 14 e
C. 16 p and 16 e
D. 16 p and 10 e
(17) Given the formulas MgBr_{2} and AlCl_{3}, which other formulas would NOT be predicted:
A. MgCl_{2}
B. MgF_{3}
C. AlBr_{3}
D. All_{3}
(18) The compound silicon tetrafluoride would have the formula
A. SiF
B. SiF_{4}
C. $\mathrm{Si}_{4} \mathrm{~F}$
D. $\mathrm{S}_{2} \mathrm{~F}$
(19) How many grams of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ are requires to make one mole?
A. 164 g
B. 118 g
C. 82 g
D. 70 g
(20) A family which easily forms anions is
A. alkali metals (Group 1)
C. halogen (Group 7)
B. noble gases
D. transition metals
(21) How many sodium atoms are there in 3.0 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
A. 3.41×10^{22} atom
B. 4.71×10^{21} atom
C. 3.41×10^{25} atom
D. 5.41×10^{22} atom
(22) A 5.27 g sample of a compound containing the elements Carbon, nitrogen and hydrogen is converted to $6.26 \mathrm{~g} \mathrm{CO}_{2}$ and 3.32 g nitrogen. What is its empirical formula?
A. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
B. $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2}$
C. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2}$
D. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{5}$
(23) The most common isotope of radium is ${ }^{226}$ Ra which contains
A. 88 protons and 226 neutrons.
B. 138 protons and 88 neutrons.
C. 226 protons and 314 neutrons.
D. 88 protons and 138 neutrons.
(24) According to the following equation, if $6 \mathrm{~mol}, ~ \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ are mixed with 10 mol of H^{+}

$$
\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}
$$

A. all of the $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ will react.
B. all of the H^{+}will react.
C. 3.3 mol of $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ will react.
D. 1.6 mol of H^{+}will remain unreacted.
(25) A 10.0 mL of $0.665 \mathrm{M} \mathrm{KMnO}_{4}$ solution is mixed with 16.7 mL of 0.892 M KMnO 4 solution. Calculate the concentration of the final solution.
A. 0.778 M
B. 0.807 M
C. 2.37 M
D. 0.411 M
(26) Determine the volume of 0.1 M KOH required to react exactly with 0.02 mol of NiCl_{2} to form a precipitate of $\mathrm{Ni}(\mathrm{OH})_{2}$.

$$
2 \mathrm{KOH}(\mathrm{aq})+\mathrm{NiCl}_{2}(\mathrm{~s}) \longrightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq})
$$

A. 400 mL
B. 200 mL
C. 40 mL
D. 20 mL
(27) How many moles of Cl^{1-} are in 20.0 mL of $0.40 \mathrm{M} \mathrm{MgCl}_{2}$?
A. 0.0080
B. 0.76
C. 0.016
D. 1900
(28) How many milliliters of water must be added to 267 mL of $0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ to prepare $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$?
(A) 536.0 ml
(B) 534.0 ml
(C) 530.0 ml
(D) 537.0 ml
(29) In the following equation, if $62 \mathrm{~g} \mathrm{CaCO}_{3}$ are decomposed and 259 g CaO are collected, how many grams of CO_{2} are generated?

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

A. 44 g
B. 100 g
C. 203 g
D. 667 g
(30) The following reaction be ns with 40.0 g Ca and an excess Br_{2}. The yield is 50%. How many grams of CaBr_{2} are produced?

$$
\mathrm{Ca}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{l}) \longrightarrow \mathrm{CaBr}_{2}(\mathrm{~s})
$$

A. 20 g
B. 100 g
C. 200 g
D. 60 g

المصطح الانجليزي		المصطلح الانجليزي	
Begin	يبدأ	Homogeneous	
Calculate		horizontal	
Collected	تجميع	illustrates	
common isotope	نظير عام	largest	
concentration	تركيز	length	
containing	يتكون	mixed	
correct value	فيمة صحيحة	periodic table	
decompose	يتكسر	positively charged	
density		Predict	يتنبأ
Determine	تقدير	prepare	تحضبر
empirical formula	صيغة أولية (بسبط)	Produce	ينتد
Equation		react	يتفاعل
exactly		remain	\checkmark
Express	يعبر	required	يتطلب
final	نهائي	solubility of a salt	ذوبانية الملح
forms	يتكون	Solution	
Formula	صيغة	species	جسيمات
Gas		types of pure substances	أنواع المواد النقية
Generated	ينتج	volume	
		yield	

