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Ch3-Conditional Probability and Independence 

Definition: Conditional probability  

  If    A)P(Bthen0P(A) .
P(A)

B)P(A

It is mean that the probability that A occurs given that ( we know) B occurs.  

Example 1:  

A coin is flipped twice if assume that all four points in the sample space 
are equally likely. What is the conditional probability that the both flips 
results in heads, given that the first flip does? 
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 Example 2 : 

A family have two kids, what is the probability that they are both boys, given that  

   i) the older is a boy? 

  ii) at least one of them is boy? 

Solution: 
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Definition: The multiplication rule of probability. 
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Example 3: 

Suppose that un urn contain 8 red balls and 4 white balls. We draw 2 balls 
from the urn without replacement if we assume that at each draw each ball 
in the urn is equally likely to be chosen, what is the probability that both balls 
drawn are red? 
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Solution: 
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Prove that  
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 Example 4: 

Urn 1 contains 2 white and 4 red balls, where urn 2 contains 1 red and 1 white 
ball. A ball is randomly chosen from urn 1 and put into urn 2, and a ball is then 
randomly selected from urn 2. what is  

i)         the probability that the ball selected from urn 2 is white 

ii )       the conditional probability that the transferred ball was white, given that   
      a white ball is selected from urn 2. 

Solution: 

i) Let W1  is a white ball from urn 1, W2 is a white ball from urn 2, R1 is a    

red ball from urn 1, and R2 is a red ball from urn 2. 

Urn 2 will contains 3 balls after first chosen  
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ii) The conditional probability that the transferred ball was white, 

given that a white ball is selected from urn 2. 
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Definition: 

If A1, A2, … , An are n mutually exclusive and exhaustive events, that is  
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Theorem of total probability 

If A1, A2, … , An are n mutually exclusive and exhaustive events then for any  
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Result:  

mutually exclusive exhaustive events.  
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Bay’s Theorem  

If A1, A2, … , An are n mutually exclusive and exhaustive events, and 
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 Example 5:  

A bin contains 3 different types of flashlights. The probability that a type 1 flashlight 
will give over 100 hours of use is 0.7, with the corresponding probabilities for type 2 
and type 3 flashlights being 0.4 and 0.3, respectively. Suppose that 20 percent of the 
flashlights in the bin are type 1, 30 percent are type 2, and 50 percent are type 3. 
  1- What is probability that a randomly chosen flashlight will give more  than 100     
  hours of use? 
   2- Given the flashlight lasted over 100 hours, what is the conditional                        
probability that it was a type 1 flashlight?  

Solution: 

1.Let A denote the event that the flashlight chosen will give over 100 hours of use,  
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 Example 6: 

A class contains 30 students, 12 boys , and 18 girls, 4 boys and 8 girls are 
superior. If we choose one student randomly chosen, what is probability that : 
1- The student is superior. 
2-The student is superior if the student is girl. 

 Solution 
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Definition: Independent Events: 

Two events A and B are independent if knowledge that A has occurred does not 
change the probability that B.    ).()( BPAPBAP 
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Example 7: 

Two coins are flipped and all 4 outcomes are assumed to be equally likely. If E 
is the event that the first coin lands heads and F is the event that the second 
coin lands tails, prove that E and F are independent 

Solution: 
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Note: 

.,)3.,)2.,)1 BABABAIf A and B are independent events, then   

are also independent events. 

Proof: 

 
P(B).P(A)

P(B)1P(A)

P(A)P(B)P(A)

B)P(AP(A))BP(A)3







 

Ch3-Conditional Probability and Independence 



 Example 8: 

Let A and B are independent events with P(A)=0.2 and P(B)=0.5 find   .BAP 

Solution: 
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The three events E,F,G are said to be independent events if EF, EG, FG, EFG are 
independent events. 
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is independent if A, B, C independent events.  

 Prove 
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Example 9: 

If S={1,2,3,4} and A={1,2}, B={1,3}, C={1,4}, prove that three events are 
independent. 
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Note: 

0P(B)and0P(A)When  then mutually exclusive events    independent events  

0P(B)or0P(A)When   not mutually exclusive events  independent events  

Example 10: 

Suppose that we toss 2 fair dice. Let E1 denote the event that the sum of the dice 
is 6 and E2 denote the event that the first die equal 4. Prove that E1 and E2 are 
independent. 
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 Example 11: 

Two fair dice are thrown. Let E denote the event that the sum of the dice is 7. Let 
F denote the event that the first die equals 4, and let G be the event that the 
second die equal 3. Prove that the three events are independent. 
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