Exercises 4.4

$$
\begin{gathered}
\text { 1) } y=2 u-3, u=3 x^{2} \Rightarrow y=2\left(3 x^{2}\right)-3=6 x^{2}-3 \\
\Rightarrow \frac{d y}{d x}=6(2 x)-0=12 x \\
\Rightarrow \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=(2)(6 x)=12 x \\
\text { 2) } y=\cos u, u=\tan x \Rightarrow y=\cos (\tan x) \\
\Rightarrow \frac{d y}{d x}=-\sin (\tan x)\left(\sec ^{2} x\right) \\
\Rightarrow \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=(-\sin u)\left(\sec ^{2} x\right)=-\sin (\tan x)\left(\sec ^{2} x\right) \\
3) y=\cot u, u=e^{x} \Rightarrow y=\cot e^{x} \\
\Rightarrow \frac{d y}{d x}=-\csc c^{2} e^{x}\left(e^{x}\right)=-e^{x} \csc { }^{2} e^{x} \\
\Rightarrow \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=-\csc c^{2} u\left(e^{x}\right)=-e^{x} \csc ^{2} u=-e^{x} \csc ^{2} e^{x} \\
4) y=\csc u, u=x^{2}-1 \Rightarrow y=\csc ^{2}\left(x^{2}-1\right) \\
\Rightarrow \frac{d y}{d x}=-\csc \left(x^{2}-1\right) \cot \left(x^{2}-1\right)(2 x)
\end{gathered}
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=-\csc u \cot u(2 x)=-\csc \left(x^{2}-1\right) \cot \left(x^{2}-1\right)(2 x)
$$

$$
\text { 5) } y=\tan u, u=10 x-2 \Rightarrow y=\tan (10 x-2)
$$

$$
\Rightarrow \frac{d y}{d x}=\sec ^{2}(10 x-2)(10)=10 \sec ^{2}(10 x-2)
$$

$$
\Rightarrow \frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\sec ^{2}(u)(10)=\sec ^{2}(10 x-2)(10)
$$

$$
=10 \sec ^{2}(10 x-2)
$$

6) $y=\left(1-x^{2}\right)^{9} \Rightarrow y^{\prime}=9\left(1-x^{2}\right)^{8}(0-2 x)=9(-2 x)\left(1-x^{2}\right)^{8}$

$$
=-18 x\left(1-x^{2}\right)^{8}
$$

7) $y=\cos \left(e^{2 x}\right) \Rightarrow y^{\prime}=-\sin \left(e^{2 x}\right) e^{2 x}(2)=-2 e^{2 x} \sin \left(e^{2 x}\right)$
8) $y=\tan (\sin x) \Rightarrow y^{\prime}=\sec ^{2}(\sin x)(\cos x)=\cos x \sec ^{2}(\sin x)$
9) $y=\sin \left(x^{2}-3 x+2\right) \Rightarrow y^{\prime}=\cos \left(x^{2}-3 x+2\right)(2 x-3)$

$$
=(2 x-3) \cos \left(x^{2}-3 x+2\right)
$$

$$
\text { 10) } y=\sec ^{5 / 4}(x+5)
$$

$$
\Rightarrow y^{\prime}=\frac{5}{4} \sec ^{\frac{5}{4}-1}(x+5)[\sec (x+5) \tan (x+5)](1)
$$

$$
=\frac{5}{4} \sec ^{\frac{5}{4}-1}(x+5) \sec (x+5) \tan (x+5)
$$

$$
=\frac{5}{4} \sec ^{\frac{5}{4}-1+1}(x+5) \tan (x+5)
$$

$$
=\frac{5}{4} \sec ^{\frac{5}{4}}(x+5) \tan (x+5)
$$

11) $y=x^{7 / 2} \Rightarrow y^{\prime}=\frac{7}{2} x^{7 / 2-1}=\frac{7}{2} x^{\frac{7}{2}-\frac{2}{2}}=\frac{7}{2} x^{5 / 2}$
12) $y=\sqrt[3]{6 x}=(6 x)^{\frac{1}{3}} \Rightarrow y^{\prime}=\frac{1}{3} x^{1 / 3^{-1}}(6)=\frac{1}{3} x^{\frac{1}{3}-\frac{3}{3}}=\frac{6}{3} x^{-2 / 3}$

$$
=2 x^{-2 / 3}=\frac{2}{x^{2 / 3}}=\frac{2}{\sqrt[3]{x^{2}}}
$$

13) $y=\sqrt{x^{3}-3} \Rightarrow y^{\prime}=\frac{1}{2 \sqrt{x^{3}-3}}\left(3 x^{2}\right)=\frac{3 x^{2}}{2 \sqrt{x^{3}-3}}$
14) $F(x)=\left(x^{3}-2 x-1\right)^{3}=3\left(x^{3}-2 x-1\right)^{2}\left(3 x^{2}-2\right)$ $=3\left(3 x^{2}-2\right)\left(x^{3}-2 x-1\right)^{2}$
15) $G(x)=\left(1+x^{5}\right)^{\frac{3}{2}}$
$\Rightarrow y^{\prime}=\frac{3}{2}\left(1+x^{5}\right)^{\frac{3}{2}-1}\left(5 x^{4}\right)=\frac{3}{2}\left(5 x^{4}\right)\left(1+x^{5}\right)^{\frac{3}{2}-\frac{2}{2}}=\frac{15}{2}\left(x^{4}\right)\left(1+x^{5}\right)^{\frac{1}{2}}$
$=\frac{15}{2} x^{4} \sqrt{1+x^{5}}$
16) $H(t)=\frac{1}{\left(t^{3}+1\right)^{4}}=\left(t^{3}+1\right)^{-4}$

$$
\begin{gathered}
\begin{array}{c}
\Rightarrow y^{\prime}=-4\left(t^{3}+1\right)^{-4-1}\left(3 t^{2}\right)=-4\left(3 t^{2}\right)\left(t^{3}+1\right)^{-5} \\
=-12\left(t^{2}\right)\left(t^{3}+1\right)^{-5}=\frac{-12\left(t^{2}\right)}{\left(t^{3}+1\right)^{5}}
\end{array} \\
\text { 17) y=tan(n} \theta) \Rightarrow y^{\prime}=\sec ^{2}(n \theta)(n)=n \sec ^{2}(n \theta) \\
\text { 18) } y=(2 x-5)^{3}\left(3 x^{2}+1\right)^{-4} \\
\Rightarrow y^{\prime}=3(2 x-5)^{2}(2)\left(3 x^{2}+1\right)^{-4} \\
\quad+(2 x-5)^{3}(-4)\left(3 x^{2}+1\right)^{-4-1}(6 x) \\
=6(2 x-5)^{2}\left(3 x^{2}+1\right)^{-4}-24 x(2 x-5)^{3}\left(3 x^{2}+1\right)^{-5}
\end{gathered}
$$

Or by logarithmic differentiable:

$$
\begin{gathered}
y=(2 x-5)^{3}\left(3 x^{2}+1\right)^{-4} \\
\ln y=\ln \left[(2 x-5)^{3}\left(3 x^{2}+1\right)^{-4}\right] \\
\ln y=\ln (2 x-5)^{3}+\ln \left(3 x^{2}+1\right)^{-4} \\
\ln y=3 \ln (2 x-5)-4 \ln \left(3 x^{2}+1\right) \\
\frac{1}{y} y^{\prime}=3 \frac{1}{(2 x-5)}(2)-4 \frac{1}{\left(3 x^{2}+1\right)}(6 x)=\frac{1}{(2 x-5)}-\frac{24}{\left(3 x^{2}+1\right)} \\
y^{\prime}=y\left[\frac{6}{(2 x-5)}-\frac{24 x}{\left(3 x^{2}+1\right)}\right] \\
y^{\prime}=(2 x-5)^{3}\left(3 x^{2}+1\right)^{-4}\left[\frac{6}{(2 x-5)}-\frac{24 x}{\left(3 x^{2}+1\right)}\right] \\
==6(2 x-5)^{2}\left(3 x^{2}+1\right)^{-4}-24 x(2 x-5)^{3}\left(3 x^{2}+1\right)^{-5} \\
(2 x-5) \\
\left.5 x^{2}+1\right)^{-4} \\
24 x(2 x-5)^{3}\left(3 x^{2}+1\right)^{-4} \\
\ln y=\ln \left(\frac{x^{2}-1}{x^{3}+1}\right)^{4}=4 \ln \left(\frac{x^{2}-1}{x^{3}+1}\right)=4\left[\ln \left(x^{2}-1\right)-\ln \left(x^{3}+1\right)\right] \\
\ln y=4 \ln \left(x^{2}-1\right)-4 \ln \left(x^{3}+1\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{y^{\prime}}{y}=\frac{4(2 x)}{x^{2}-1}-\frac{4\left(3 x^{2}\right)}{x^{3}+1} \\
\Rightarrow y^{\prime}=y\left[\frac{(8 x)}{x^{2}-1}-\frac{\left(12 x^{2}\right)}{x^{3}+1}\right]=\left(\frac{x^{2}-1}{x^{3}+1}\right)^{4}\left[\frac{(8 x)}{x^{2}-1}-\frac{\left(12 x^{2}\right)}{x^{3}+1}\right] \\
=\frac{\left(x^{2}-1\right)^{4}}{\left(x^{3}+1\right)^{4}}\left[\frac{(8 x)\left(x^{3}+1\right)-12 x^{2}\left(x^{2}-1\right)}{\left(x^{2}-1\right)\left(x^{3}+1\right)}\right] \\
=\frac{\left(x^{2}-1\right)^{4}}{\left(x^{3}+1\right)^{4}}\left[\frac{-4 x^{4}+12 x^{2}+8 x}{\left(x^{2}-1\right)\left(x^{3}+1\right)}\right] \\
=\frac{\left(x^{2}-1\right)^{4}}{\left(x^{3}+1\right)^{5}}\left[-4 x\left(x^{3}-3 x-2\right)\right] \\
\text { 20) } y=e^{x \sin x} \Rightarrow y^{\prime}=e^{x \sin x}[(1) \sin x+x \cos x] \\
=e^{x \sin x}[\sin x+x \cos x]
\end{gathered}
$$

21) $f(\theta)=\left(\frac{\sin \theta}{\cos \theta-1}\right)^{3} \Rightarrow f^{\prime}$

$$
\begin{aligned}
& =3\left(\frac{\sin \theta}{\cos \theta-1}\right)^{2}\left[\frac{\cos \theta(\cos \theta-1)-\sin \theta(-\sin \theta-0)}{(\cos \theta-1)^{2}}\right] \\
& =3\left(\frac{\sin \theta}{\cos \theta-1}\right)^{2}\left[\frac{\cos ^{2} \theta-\cos \theta+\sin ^{2} \theta}{(\cos \theta-1)^{2}}\right] \\
& =3 \frac{\sin ^{2} \theta}{(\cos \theta-1)^{2}}\left[\frac{1-\cos \theta}{(\cos \theta-1)^{2}}\right] \\
& =3 \frac{1-\cos ^{2} \theta}{(\cos \theta-1)^{2}}\left[\frac{-1(\cos \theta-1)}{(\cos \theta-1)^{2}}\right] \\
& =3 \frac{(1-\cos \theta)(1+\cos \theta)}{(\cos \theta-1)^{2}}\left[\frac{-1(\cos \theta-1)}{(\cos \theta-1)^{2}}\right] \\
& =3 \frac{-(\cos \theta-1)(1+\cos \theta)}{(\cos \theta-1)^{2}}\left[\frac{-1}{\cos \theta-1}\right]=3 \frac{1+\cos \theta}{(\cos \theta-1)^{2}}
\end{aligned}
$$

$$
\text { 22) } g(t)=\tan \left(\frac{\cos t}{t}\right) \Rightarrow g^{\prime}=\sec ^{2}\left(\frac{\cos t}{t}\right)\left[\frac{-t \sin t-\cos t}{t^{2}}\right]
$$

$$
\begin{gathered}
\text { 23) } y=e^{x \cos x} \Rightarrow y^{\prime}=e^{x \cos x}[\cos x-x \sin x] \\
\Rightarrow y^{\prime \prime}=\frac{d}{d x}\left[e^{x \cos x}\right][\cos x-x \sin x]+\left[e^{x \cos x}\right] \frac{d}{d x}[\cos x-x \sin x]
\end{gathered}
$$

$$
\begin{gathered}
=e^{x \cos x}[\cos x-x \sin x][\cos x-x \sin x]+e^{x \cos x}[-\sin x- \\
\quad(\sin x-x \cos x)] \\
=e^{x \cos x}\left[[\cos x-x \sin x]^{2}+[-\sin x-\sin x+x \cos x]\right] \\
25) y=\sec (2 x-1) \Rightarrow y^{\prime}=\sec (2 x-1) \tan (2 x-1)(2) \\
=2 \sec (2 x-1) \tan (2 x-1) \\
\Rightarrow y^{\prime \prime}=2 \frac{d}{d x}[\sec (2 x-1)] \cdot \tan (2 x-1) \\
\quad+2 \sec (2 x-1) \frac{d}{d x} \tan (2 x-1)
\end{gathered}
$$

The equation of tangent line is

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-0=-1(x-\pi) \Rightarrow y=-x+\pi \Rightarrow y+x \\
=\pi
\end{gathered}
$$

