MATH 110

EXERCISES 4.1

$$
\text { 1) } \begin{aligned}
f(x) & =3 x^{2} \Rightarrow f^{\prime}(x)=3(2) x=6 x \\
& \Rightarrow f^{\prime}(2)=6(2)=12 \\
& \Rightarrow f^{\prime}(0)=6(0)=0 \\
& \Rightarrow f^{\prime}(3)=6(3)=18
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
g(x) & =\sqrt{x+4} \Rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{x+4}} \cdot(1)=\frac{1}{2 \sqrt{x+4}} \\
& \Rightarrow g^{\prime}(5)=\frac{1}{2 \sqrt{5+4}}=\frac{1}{2 \sqrt{9}}=\frac{1}{2(3)}=\frac{1}{9} \\
& \Rightarrow g^{\prime}(0)=\frac{1}{2 \sqrt{0+4}}=\frac{1}{2 \sqrt{4}}=\frac{1}{2(2)}=\frac{1}{4} \\
& \Rightarrow g^{\prime}(-3)=\frac{1}{2 \sqrt{-3+4}}=\frac{1}{2 \sqrt{1}}=\frac{1}{2}
\end{aligned}
$$

3) $h(x)=x^{2}-5 \Rightarrow f^{\prime}(x)=2 x-0=2 x$

$$
\begin{gathered}
\Rightarrow h^{\prime}(3)=2(3)=6 \\
\Rightarrow h^{\prime}(0)=2(0)=0 \\
\Rightarrow h^{\prime}(-1)=2(-1)=-2
\end{gathered}
$$

4) $f(x)=\frac{1}{x^{2}}=x^{-2} \Rightarrow f^{\prime}(x)=-2 x^{-3}=\frac{-2}{x^{3}}$
$\Rightarrow f^{\prime}(-1)=\frac{-2}{(-1)^{3}}=\frac{-2}{-1}=2$
$\Rightarrow f^{\prime}(1)=\frac{-2}{1^{3}}=\frac{-2}{1}=-2$
$\Rightarrow f^{\prime}(3)=\frac{-2}{3^{3}}=\frac{-2}{27}$

$$
\text { 5) } \begin{gathered}
g(x)=2 x^{3}-1 \Rightarrow f^{\prime}(x)=2(3) x^{2}=6 x^{2} \\
\Rightarrow g^{\prime}(0)=6(0)^{2}=0 \\
\Rightarrow g^{\prime}(2)=6(2)^{2}=6(4)=24 \\
\Rightarrow g^{\prime}(-2)=6(-2)^{2}=6(4)=24
\end{gathered}
$$

6) $F(z)=\frac{1-2 z}{z} \Rightarrow f^{\prime}(x)=\frac{(0-2)(z)-(1-2 z)(1)}{z^{2}}=\frac{-2 z-1+2 z}{z^{2}}=\frac{1}{z^{2}}$

$$
\begin{gathered}
\Rightarrow F^{\prime}(-1)=\frac{1}{(-1)^{2}}=\frac{1}{1}=1 \\
\Rightarrow F^{\prime}(2)=\frac{1}{2^{2}}=\frac{1}{4} \\
\Rightarrow F^{\prime}(\sqrt{2})=\frac{1}{\sqrt{2}^{2}}=\frac{1}{2}
\end{gathered}
$$

7) $f(3)=-1, f^{\prime}(3)=5, y=f(x)$ at $x=3 \Rightarrow x_{1}=3, y_{1}=-1, m=5$

The equation of tangent line is:

$$
\begin{gathered}
\frac{y-y_{1}}{x-x_{1}}=m \Rightarrow \frac{y-(-1)}{x-3}=5 \\
\Rightarrow y+1=5(x-3) \Rightarrow y+1=5 x-5(3) \Rightarrow y=5 x-15-1 \\
\Rightarrow y=5 x-16
\end{gathered}
$$

8) $f(-1)=2, f^{\prime}(-1)=4, y=f(x)$ at $x=-1 \Rightarrow x_{1}=-1, y_{1}=2, m=4$ The equation of tangent line is:

$$
\begin{gathered}
\frac{y-y_{1}}{x-x_{1}}=m \Rightarrow \frac{y-(2)}{x-(-1)}=4 \\
\Rightarrow y-1=4(x+1) \Rightarrow y-1=4 x+4(1) \Rightarrow y=4 x+4+1 \Rightarrow y=4 x+5
\end{gathered}
$$

9) $f(0)=1, f^{\prime}(0)=2, y=f(x)$ at $x=0 \Rightarrow x_{1}=0, y_{1}=1, m=2$

The equation of tangent line is:

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}}=m \Rightarrow \frac{y-(1)}{x-0}=2 \\
& \Rightarrow y-1=2(x) \Rightarrow y=2 x+1
\end{aligned}
$$

$$
\text { 10) } y=2 x-3 \Rightarrow \frac{d y}{d x}=2(1)-0=2
$$

$$
\text { 11) } y=2 x^{3}-3 x+1 \Rightarrow \frac{d y}{d x}=2\left(3 x^{2}\right)-3(1)+0=6 x^{2}-3
$$

$$
\text { 12) } y=\frac{1}{x}=x^{-1} \Rightarrow \frac{d y}{d x}=-1 x^{-2}=-x^{-2}=\frac{-1}{x^{2}}
$$

$$
\begin{gathered}
\text { 13) } y=\frac{1}{\sqrt{x-4}}=\frac{1}{(x-4)^{1 / 2}}=(x-4)^{-1 / 2} \\
\Rightarrow \frac{d y}{d x}=-\frac{1}{2}(x-4)^{\frac{-1}{2}-1}(1)=-\frac{1}{2}(x-4)^{\frac{-1}{2}-\frac{2}{2}}=-\frac{1}{2}(x-4)^{\frac{-3}{2}}=\frac{-1}{2 \sqrt{(x-4)^{3}}}
\end{gathered}
$$

14) $y=x+\frac{1}{x}=x+x^{-1} \Rightarrow \frac{d y}{d x}=1-1 x^{-2}=1-\frac{1}{x^{2}}$

$$
\text { 15) } f(t)=3 t^{2}+1 \Rightarrow f^{\prime}(t)=3(2 t)+0=6 t
$$

$$
\text { 16) } A=\pi r^{2} \Rightarrow \frac{d A}{d r}=2 \pi r
$$

$$
\text { 17) } z=\frac{2}{\sqrt{w-1}}=\frac{2}{(w-1)^{1 / 2}}=2(w-1)^{-1 / 2}
$$

$$
\Rightarrow \frac{d z}{d w}=2\left(\frac{-1}{2}\right)(w-1)^{-\frac{1}{2}-1}=-(w-1)^{\frac{-3}{2}}=\frac{-1}{\sqrt{(w-1)^{3}}}
$$

$$
\text { 18) } x=v t+\frac{1}{2} g t^{2} \Rightarrow \frac{d x}{d t}=v+\frac{1}{2}(2) g t=v+g t
$$

$$
\text { 19) } y=(x+1)^{5} \Rightarrow \frac{d y}{d x}=5(x+1)^{4}(1)=5(x+1)^{4}
$$

The slope of tangent line at $x=-2$ is

$$
\left.\frac{d y}{d x}\right|_{x=-2}=5(-2+1)^{4}=5(-1)^{4}=5(1)=5
$$

$$
\text { 20) } f(t)=t+\frac{t}{2} \Rightarrow f(t)^{\prime}=1+\frac{1}{2}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}
$$

The slope of tangent line at $t=2$ is

$$
\left.\frac{d f}{d t}\right|_{t=2}=\frac{3}{2}
$$

$$
\text { 21) } y=(x+2)^{-3} \Rightarrow \frac{d y}{d x}=-3(x+2)^{-4}(1)=\frac{-3}{(x+2)^{4}}
$$

The slope of tangent line at $x=-1$ is

$$
\left.\frac{d y}{d x}\right|_{x=-1}=\frac{-3}{(-1+2)^{4}}=\frac{-3}{(1)^{4}}=\frac{-3}{1}=-3
$$

22) $f(x)=\sqrt{x^{2}-3 x+6} \Rightarrow \frac{d f}{d x}=\frac{1}{2 \sqrt{x^{2}-3 x+6}}(2 x-3)=\frac{2 x-3}{2 \sqrt{x^{2}-3 x+6}}$

The slope of tangent line at $x=2$ is

$$
\begin{gathered}
\left.\frac{d f}{d x}\right|_{x=2}=\frac{2(2)-3}{2 \sqrt{(2)^{2}-3(2)+6}}=\frac{4-3}{2 \sqrt{4-6+6}}=\frac{1}{2 \sqrt{4}}=\frac{1}{2(2)}=\frac{1}{4} \\
\text { 23) } f(x)=1-2 x^{3} \Rightarrow \frac{d y}{d x}=0-2(3) x^{2}=-6 x^{2} \\
f(1)=1-2(1)^{3}=1-2=-1 \\
f^{\prime}(1)=-6(1)^{2}=-6
\end{gathered}
$$

$$
\Rightarrow x_{1}=1, y_{1}=-1, m=-6
$$

The equation of tangent line is:

$$
\begin{gathered}
\frac{y-y_{1}}{x-x_{1}}=m \Rightarrow \frac{y-(-1)}{x-(1)}=-6 \\
\Rightarrow y+1=-6(x-1) \Rightarrow y+1=-6 x-6(-1) \Rightarrow y=-6 x+6-1 \Rightarrow y \\
=-6 x+5 \\
24) x(t)=\frac{1}{2} t^{2}+3 t \Rightarrow \frac{d x}{d t}=\frac{1}{2}(2 t)+3=t+3 \\
x(2)=\frac{1}{2} 2^{2}+3(2)=\frac{1}{2}(4)+6=2+6=\left.8 \Rightarrow \frac{d x}{d t}\right|_{t=2}=2+3=6 \\
\Rightarrow x_{1}=2, y_{1}=8, m=6
\end{gathered}
$$

The equation of tangent line is:

$$
\begin{gathered}
\frac{y-y_{1}}{x-x_{1}}=m \Rightarrow \frac{y-(8)}{x-(2)}=6 \\
\Rightarrow y-8=6(x-2) \Rightarrow y-8=6 x-6(2) \Rightarrow y=6 x-12+8 \Rightarrow y=6 x-4 \\
25) g(x)=\sqrt{1-x^{3}} \Rightarrow \frac{d g}{d x}=\frac{1}{2 \sqrt{1-x^{3}}}\left(0-3 x^{2}\right)=\frac{-3 x^{2}}{2 \sqrt{1-x^{3}}} \\
g(-1)=\sqrt{1-(-1)^{3}}=\sqrt{1+1}=\left.\sqrt{2} \Rightarrow \frac{d g}{d x}\right|_{x=-1}=\frac{-3(-1)^{2}}{2 \sqrt{1-(-1)^{3}}}=\frac{-3(1)}{2 \sqrt{1+1}} \\
=\frac{-3}{2 \sqrt{2}} \quad \Rightarrow x_{1}=-1, y_{1}=\sqrt{2}, m=\frac{-3}{2 \sqrt{2}}
\end{gathered}
$$

The equation of tangent line is:

$$
\begin{gathered}
\frac{y-y_{1}}{x-x_{1}}=m \Rightarrow \frac{y-(\sqrt{2})}{x-(-1)}=\frac{-3}{2 \sqrt{2}} \\
\Rightarrow 2 \sqrt{2} y-2 \sqrt{2} \sqrt{2}=-3(x+1) \Rightarrow 2 \sqrt{2} y-2(2)=-3 x-3(1) \\
\Rightarrow 2 \sqrt{2} y=-3 x-3+4 \Rightarrow 2 \sqrt{2} y=-3 x+1 \Rightarrow y=\frac{-3 x+1}{2 \sqrt{2}}
\end{gathered}
$$

