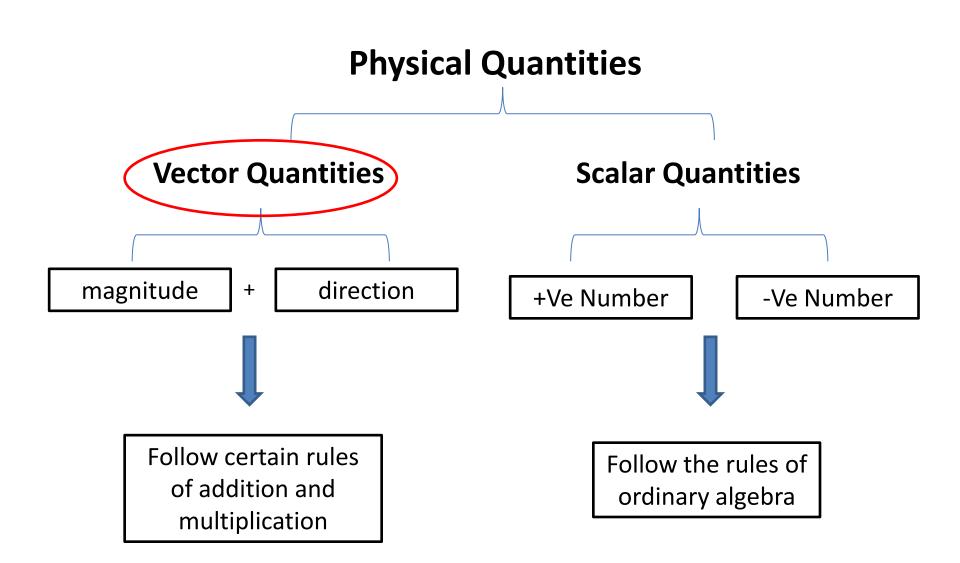
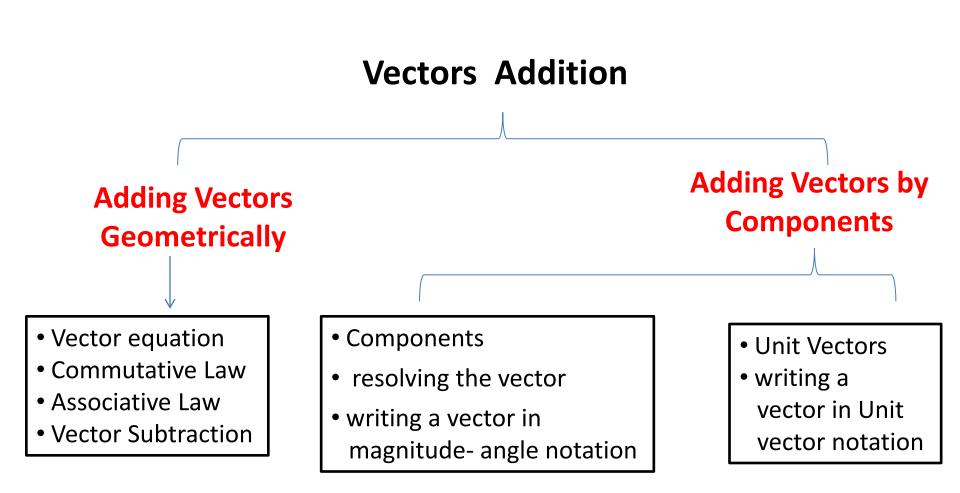
Chapter 3

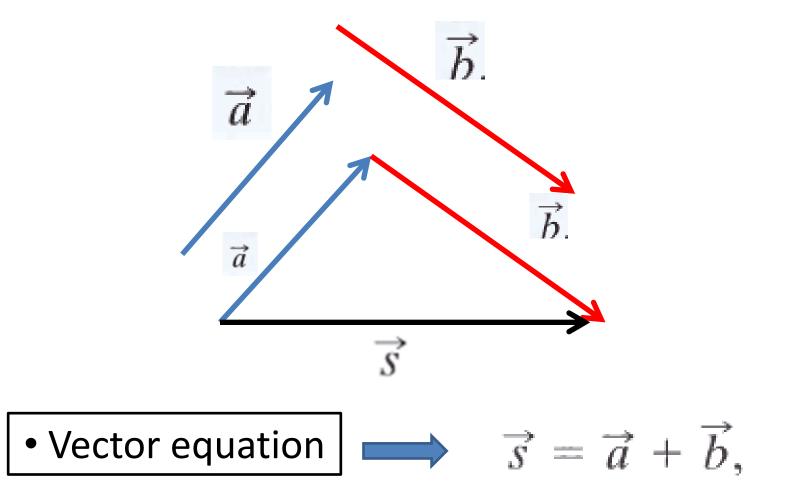
VECTORS

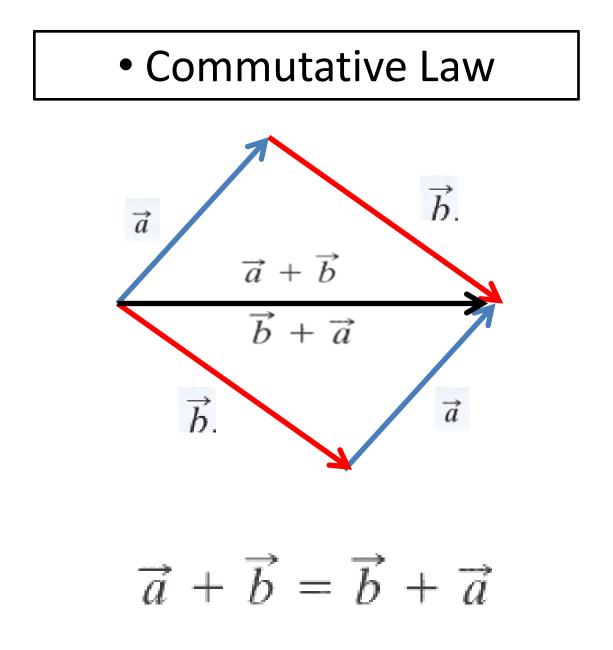
By Dr. Lubna Sindi

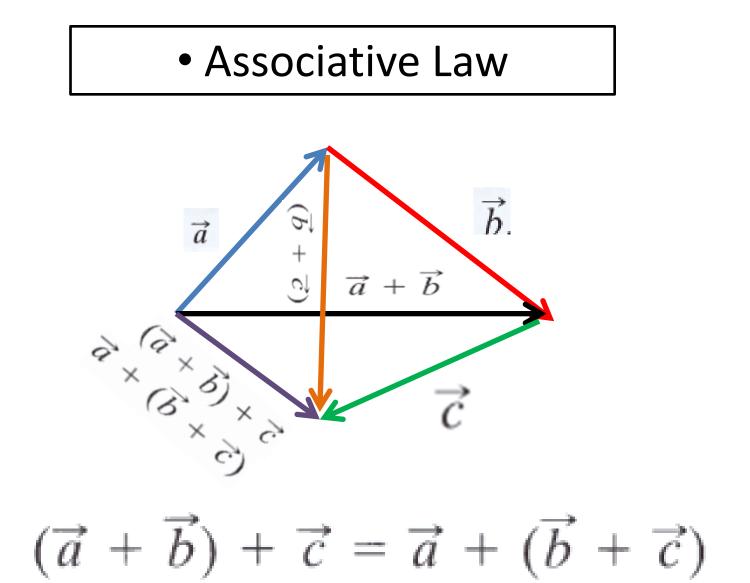




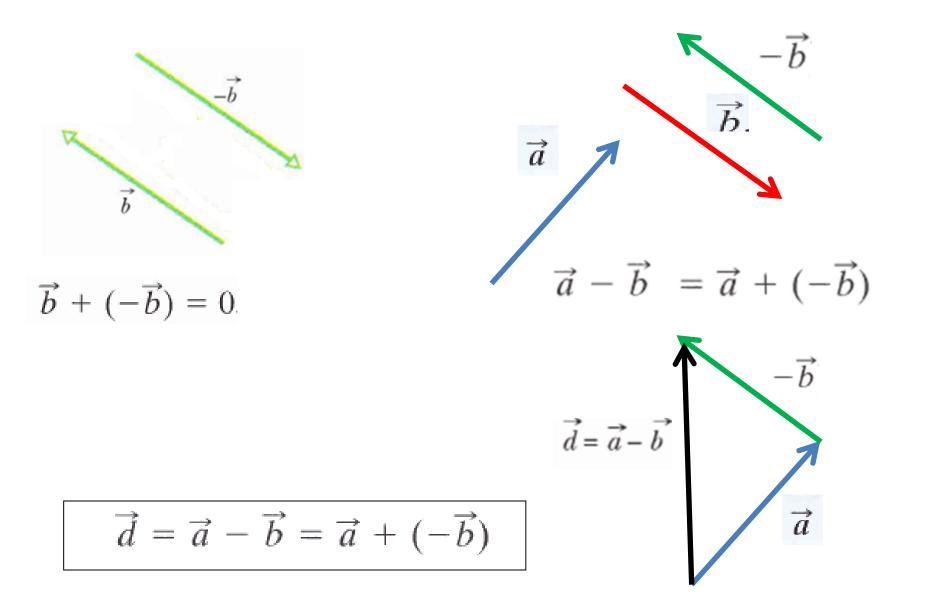
Adding Vectors Geometrically



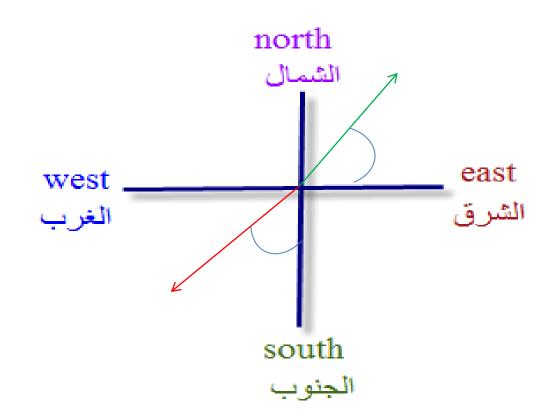




Vector Subtraction



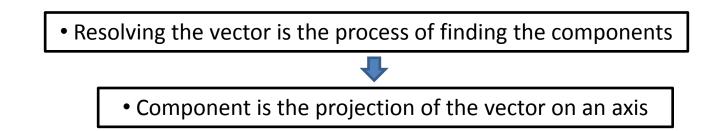
In an orienteering class, you have the goal of moving as far (straight-line distance) from base camp as possible by making three straight-line moves. You may use the following displacements in any order: (a) \vec{a} , 2.0 km due east (directly toward the east); (b) \vec{b} , 2.0 km 30° north of east (at an angle of 30° toward the north from due east); (c) \vec{c} , 1.0 km due west. Alternatively, you may substitute either $-\vec{b}$ for \vec{b} or $-\vec{c}$ for \vec{c} . What is the greatest distance you can be from base camp at the end of the third displacement?

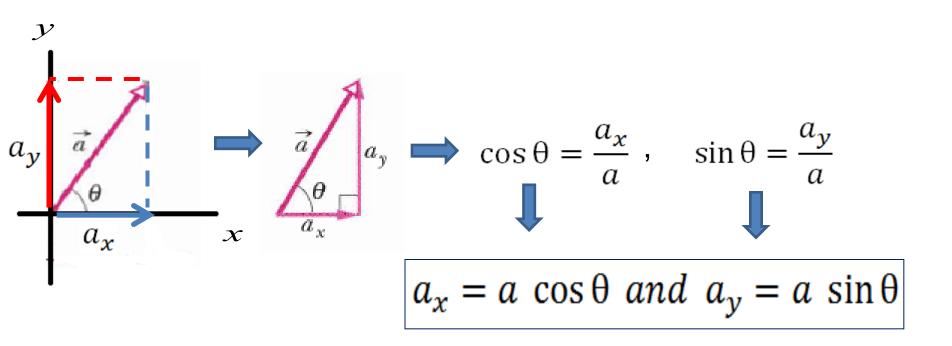


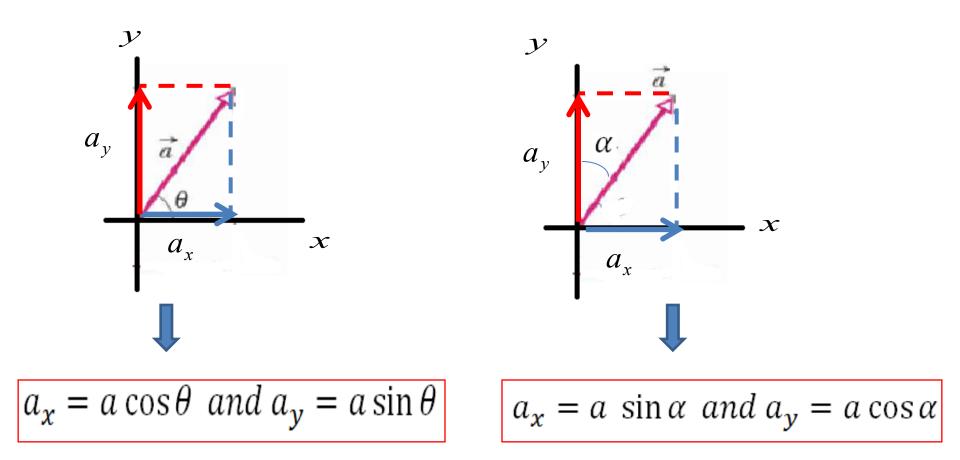
North of **east** = toward the north from due **east**

West of **south**= = toward the west from due **south**

Components of Vectors





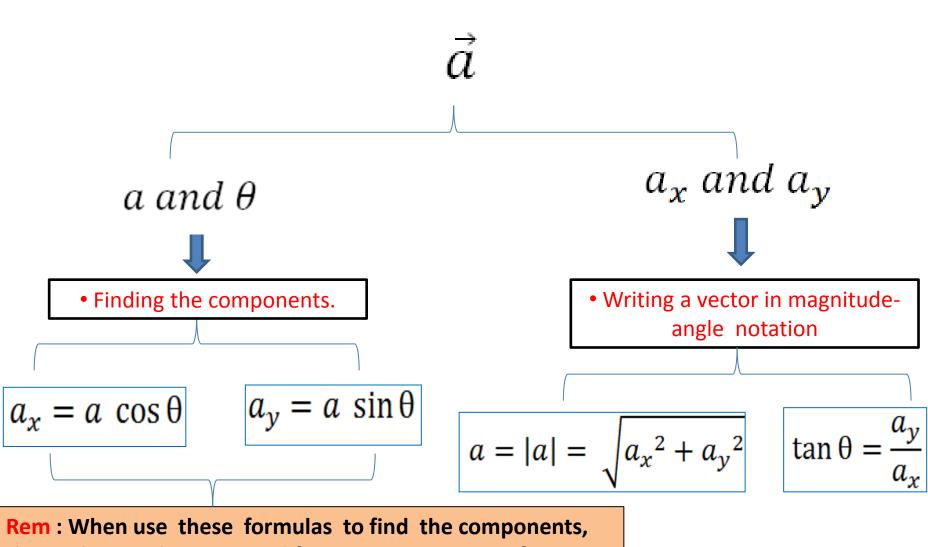


• Writing a vector in magnitude- angle notation

$$\vec{a} : a_x \text{ and } a_y$$
Magnitude
$$Angle (Direction)$$

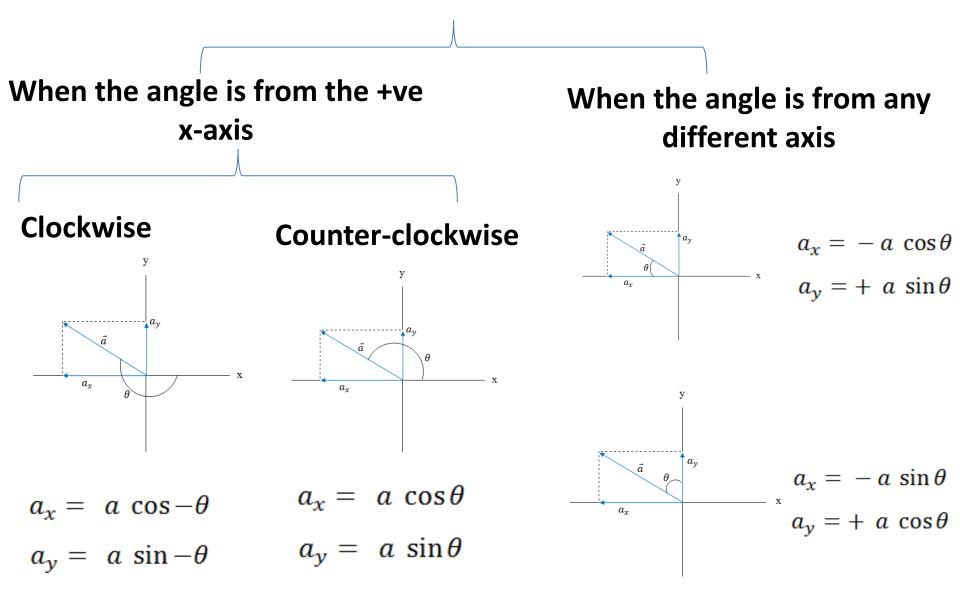
$$a = |a| = \sqrt{a_x^2 + a_y^2}$$

$$\tan \theta = \frac{a_y}{a_x} => \theta = \tan^{-1} \frac{a_y}{a_x}$$

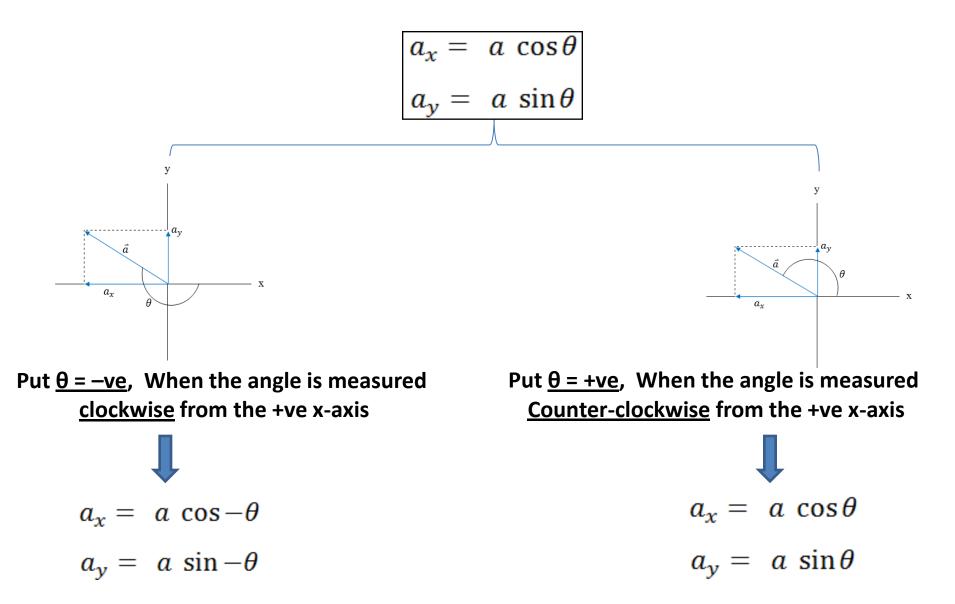


the angle must be measured from positive X-axis, if clockwise put θ -ve if counterclockwise put θ +ve.

How to find the components of a vector in different positions?



To find the components, when the angle is measured from the +ve x-axis use

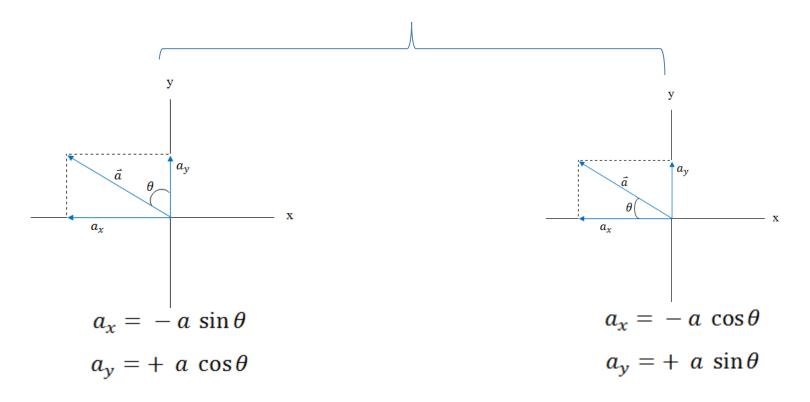


To find the components, when the angle is measured from any axis even the +ve x-axis

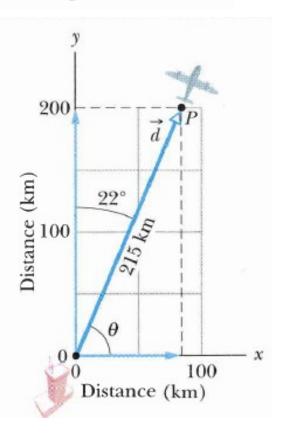
1- Take the given angle with the axis

2- put the signs of the components according to their positions on the axes

3- put sine or cosine according to the angle position.

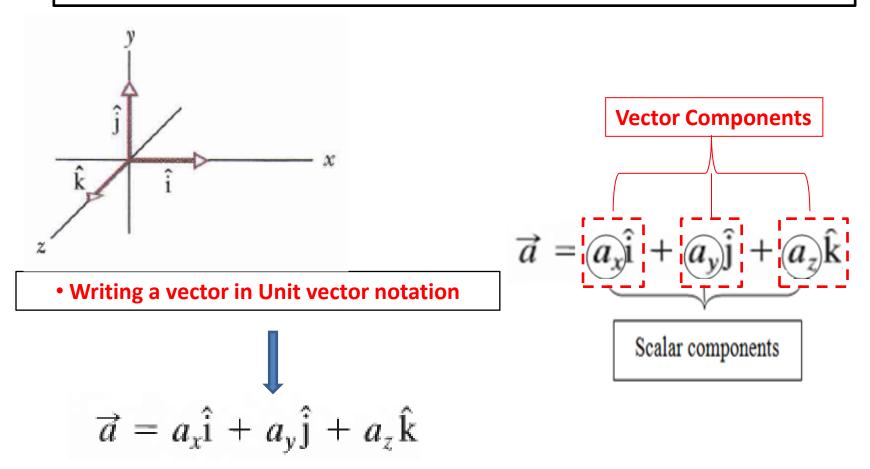


A small airplane leaves an airport on an overcast day and is later sighted 215 km away, in a direction making an angle of 22° east of due north. How far east and north is the airplane from the airport when sighted?

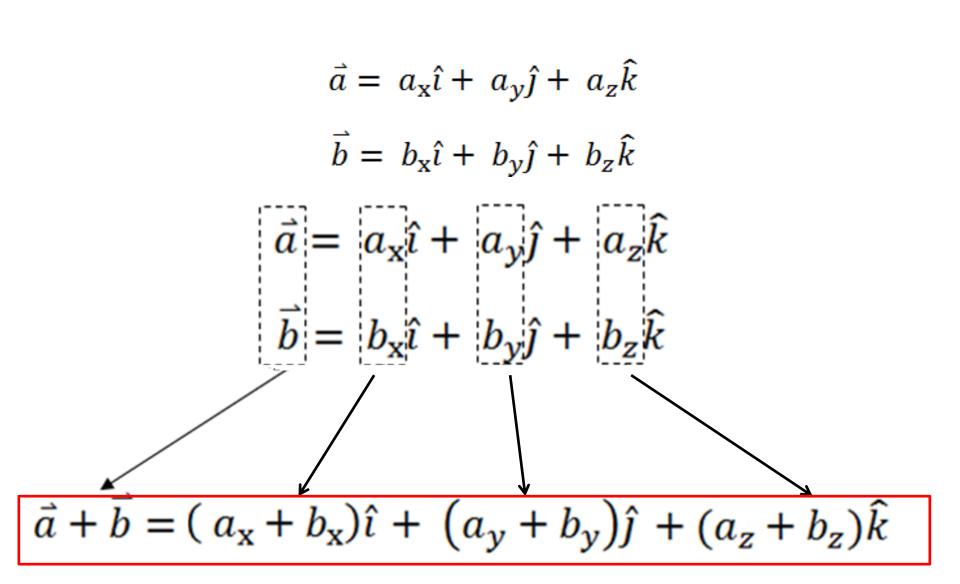


Unit Vectors

 Unit vector is a vector of magnitude 1 and points in a particular direction



Adding vectors by Components



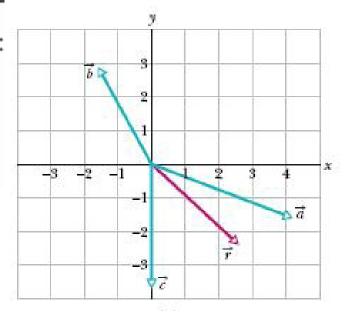
and

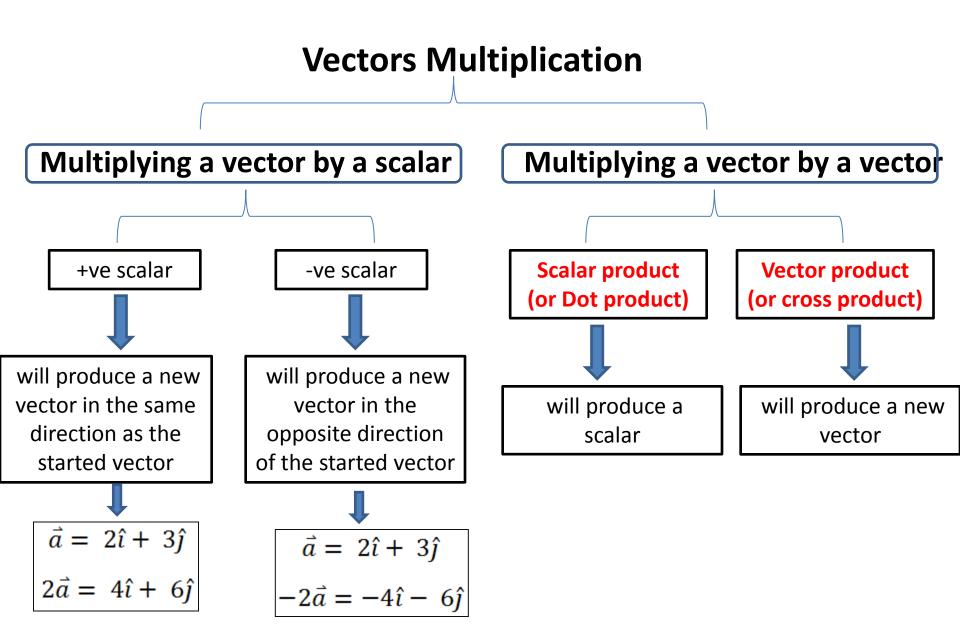
Figure 3-16a shows the following three vectors:

$$\vec{a} = (4.2 \text{ m})\hat{i} - (1.5 \text{ m})\hat{j},$$

 $\vec{b} = (-1.6 \text{ m})\hat{i} + (2.9 \text{ m})\hat{j},$
 $\vec{c} = (-3.7 \text{ m})\hat{j}.$

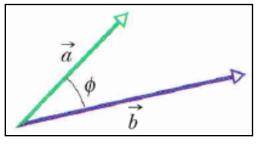
What is their vector sum \vec{r} which is also shown?

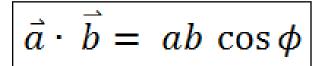




Scalar (or Dot product)

If the two vectors are given in magnitude and the angle between them





If the two vectors are given in unit vector notation

 $\vec{a} = a_{x}\hat{i} + a_{y}\hat{j} + a_{z}\hat{k}$ $\vec{b} = b_{x}\hat{i} + b_{y}\hat{j} + b_{z}\hat{k}$

 $\vec{a} \cdot \vec{b} = a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}$

$$\vec{a} \cdot \vec{b} = ab \cos \phi$$

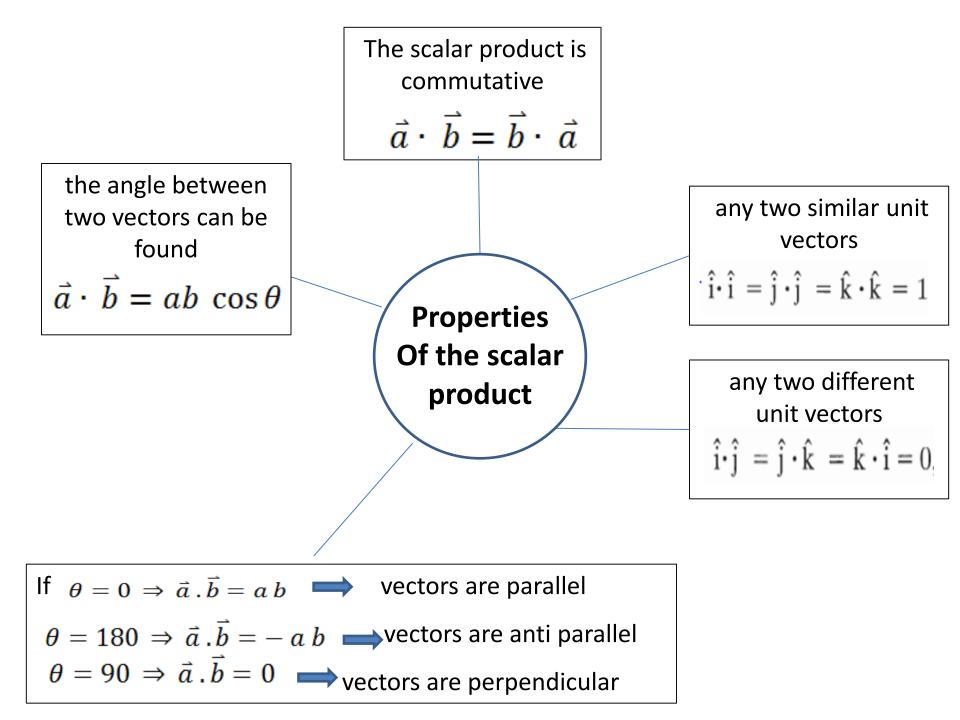
1- The scalar product is commutative $\implies \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

- 2- If the two vectors are parallel $\implies \theta = 0 \Rightarrow \vec{a} \cdot \vec{b} = a b \longrightarrow$
- 3- If the two vectors are perpendicular $\implies \theta = 90 \Rightarrow \vec{a} \cdot \vec{b} = 0$

4- If the two vectors are Antiparallel $\implies \theta = 180 \Rightarrow \vec{a} \cdot \vec{b} = -ab$

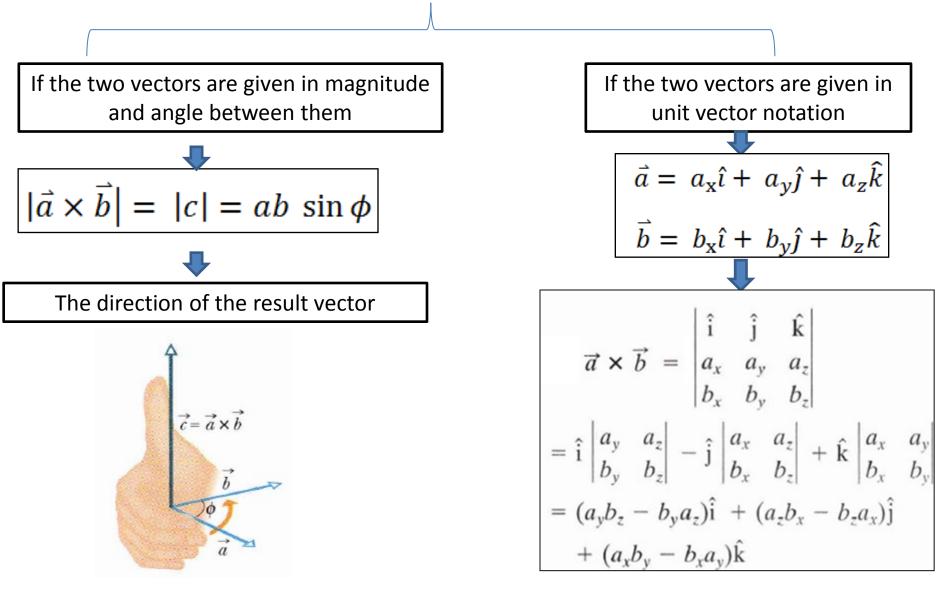
5- Multiplying Unit vectors

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = (1)(1)\cos 0 = 1 \implies \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$
$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = (1)(1)\cos 90 = 0 \implies \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$



What is the angle ϕ between $\vec{a} = 3.0\hat{i} - 4.0\hat{j}$ and $\vec{b} = -2.0\hat{i} + 3.0\hat{k}$?

Vector (or Cross product)



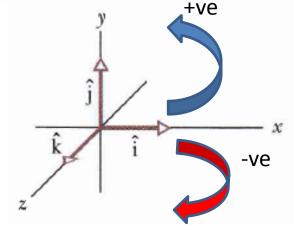
$$\left|\vec{a} \times \vec{b}\right| = |c| = ab \sin \phi$$

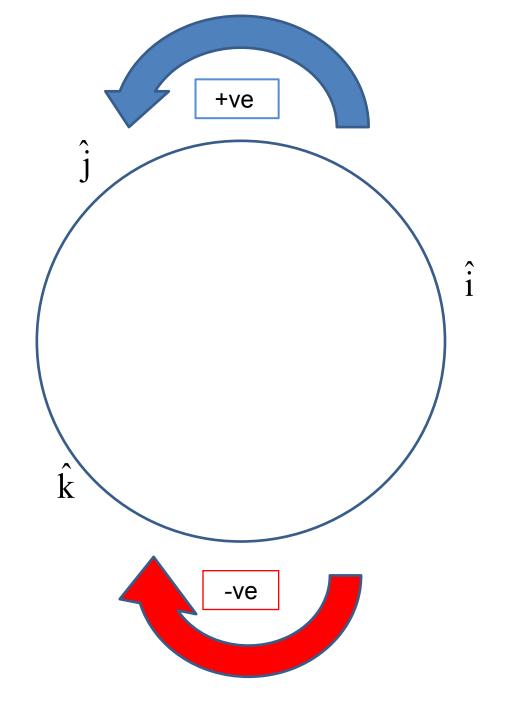
- 1- The vector product is Anti-commutative $\implies \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- 2- If the two vectors are parallel $\implies \theta = 0 \Rightarrow \vec{a} \times \vec{b} = 0 \longrightarrow$
- 3- If the two vectors are perpendicular $\Rightarrow \theta = 90 \Rightarrow |\vec{a} \times \vec{b}| = a b$
- 4- If the two vectors are Anti-parallel $\implies \theta = 180 \Rightarrow \vec{a} \times \vec{b} = 0$
- 5- Multiplying Unit vectors

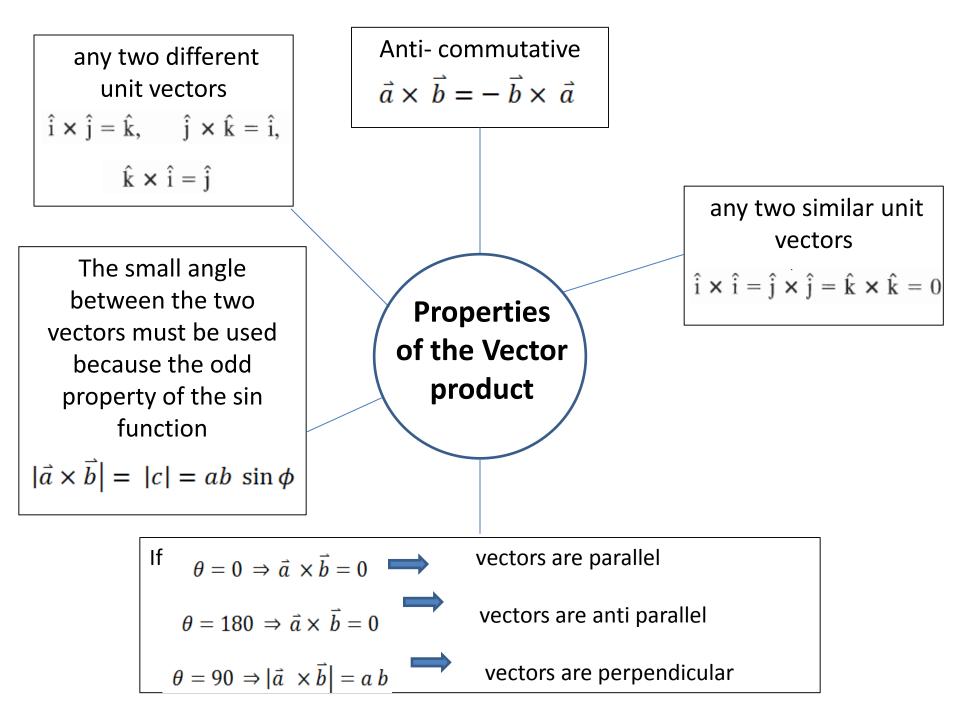
$$\left|\hat{\mathbf{i}} \times \hat{\mathbf{i}}\right| = (1)(1)\sin 0 = 0 \implies \hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$$

$$\begin{vmatrix} \hat{i} \times \hat{j} \end{vmatrix} = (1)(1)\sin 90 = 1 \implies \hat{i} \times \hat{j} = \hat{k}$$
$$\hat{i} \times \hat{j} = \hat{k}, \qquad \hat{j} \times \hat{k} = \hat{i}, \qquad \hat{k} \times \hat{i} = \hat{j}$$

$$\hat{j} \times \hat{i} = -\hat{k}$$
 $\hat{k} \times \hat{j} = -\hat{i}$ $\hat{i} \times \hat{k} = -\hat{j}$







If $\vec{a} = 3\hat{i} - 4\hat{j}$ and $\vec{b} = -2\hat{i} + 3\hat{k}$, what is $\vec{c} = \vec{a} \times \vec{b}$?

The End