




 

Definition 4.1.1: Derivative Function 

The function f   defined by the formula  
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Is called the derivative of f with respect to x. The domain of f   consists 
of all x in the domain of f for which the limit exists. 

Alternative formula for the Derivative  
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Example  

Find the derivative with respect to x of 4)( 2  xxf .  

Solution Here we have 4)( 2  xxf , so 
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Definition 4.1.2:  

A function f is differentiable at a if )(af   exists. It is differentiable on an open interval (a, b) [or 
),( a  or ),( a  or ),(  ] if it is differentiable at every number in the interval. It is differentiable 

on a closed interval [a, b] if it is differentiable on the interior (a, b) and if the limits 
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          Right-hand derivative at a 
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          Left-hand derivative at b 

exist at the endpoints. 

 

 



  

Example  

Show that the function xxf )(  is not differentiable at 0x  and find a formula for )(xf . 

Solution  
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Since these one-sided limits are not equal, the two-sided limit does not exist, and hence f is not 
differentiable at 0x .   

 

  

  



 

Theorem: Differentiability Implies Continuity 

If a function f  is differentiable at c, then f  is continuous at c. 

Defferentiation Rules 

In Section 4.1 we defined the derivative of a function f as a limit, and we used that limit to calculate a few 
simple derivatives. In this section we introduce a few rules that allow us to differentiate a great variety of 
functions. These rules will enable us to calculate derivatives more efficiently. 

 

Rule 1: Derivative of a Constant Function 

The derivative of a constant function cxf )(  is zero; that is 
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Rule 2: Power Rule for Positive Integers 

If n is a positive integer, then  
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Rule 3: Constant Multiple Rule 

If f is a differentiable function of x, and c is a constant, then  
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Rule 4: Sum and Difference Rule 

If f and g are differentiable at x, then so are gf   and gf   and  
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Example 

If ,732 2
2
33  xxxy  find .
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Solution  
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Rule 5: Derivative Product Rule 

If f and g are differentiable at x, then so is their product gf  and  
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Example 

If ),1)(3( 23  xxy  find .
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Solution  
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Rule 6: Derivative Quotient Rule 

If f and g are differentiable at x and if 0)( xg , then the quotient 

gf /  is differentiable at x, and  
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If ,
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xxy  find .
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Solution  

Applying the Quotient Rule yields  
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Example  Finding Higher Derivatives 

The first five derivatives of 132 235  xxxxy  are 

 1st derivative:  1665 24  xxxy  

 2nd derivative:  61220 3  xxy  

 3rd derivative:  1260 2 xy  

 4th derivative:  xy 120)4(   

 5th derivative:  .120)5( y  

The function has derivatives of all order, the 6th and later derivatives all being zero. So, 
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Derivatives of Trigonometric Functions 

 

Theorem 4.4.1:               Derivative of Trigonometric Functions 
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Solution  
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Solution  
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Example 

Find y   if xy csc .  

Solution  
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Example Finding repeated derivatives 

Find the 49th derivative of xsin .  

Solution  

The first few derivatives of xxf sin)(   are as follows: 

    xxf cos)(   

    xxf sin)(   
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    xxf sin)()4(   

xxf cos)()5(   

Note that the successive derivatives occur in a cycle of length 4 and, in particular, xxf n sin)()( 

whenever n is a multiple of 4. Therefore 
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The Chain Rule and Parametric Equations 

Theorem: The Chain Rule 

If g is differentiable at x and f is differentiable at g(x), then the 
composite function gfF   defined by ))(()( xgfxF   is 

differentiable at x and F   is given by the product   

).())(()( xgxgfxF   

In Leibniz notation, if )(ufy   and )(xgu   are both differentiable 

functions, then 
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Example  Applying the Chain Rule 

Find )(xF   if 1)( 3  xxF .  

Solution 

If we let 13  xu  and uy  , then  
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The Chain Rule with Powers of a Function 

If n is any real number and )(xgu   is differentiable, then 
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More generally, the Chain Rule gives 
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Example  Differentiate an exponential function with natural base. 

Find 
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 if xy sine  .  

Solution  

.ecoscosesin
d
dee

d
d

d
d sinsinsinsin xxxx xxx

xxx
y

                            



  

We can use the Chain Rule to differentiate an exponential function with any 
base a > 0. Note that 

  xaxaxa )(lnln ee   

and the Chain Rule gives 
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Definition: Parametric Curve 

If x and y are given as functions 
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over an interval of t–values, then the set of points ))(),((),( tgtfyx   defined 
by these equations is a parametric curve. The equations are 
parametric equations for the curve 

 
 

 

  

  

  

 



Example 10  Moving counterclockwise on a circle. 

Graph the parametric curve 20,sin,cos  ttrytrx .  

 

Solution  

Since 222222 )sin(cos rttryx  , the parametric curves lie along the circle of radius r. The 

parameterization describes a motion that being at the point (r, 0) and transverse the circle 222 ryx   

once counterclockwise, retuning to (r, 0) at 2t .  

                                                                                                  

A parametrized curve )(tfx   and )(tgy   is differentiable at t if f and g are differentiable at t. At a 
point on a differentiable parametrized curve where y is also a differentiable function of x, the derivative 
dy/dt, dx/dt, and dy/dx are related by the Chain Rule:  
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Example        Differentiating with a parameter. 

If 32  tx  and 52  ty , find the value of 
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d  at t = 2. 

Solution  

Since 
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Example  

Find y   if 43 32  yx .  

Solution  

To start, we differentiate both sides of the equation with respect to x in order to find xyy /dd .  
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We now apply the Quotient Rule to find y  .  
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Finally, we substitute 2/2 yxy   to express y   in terms of x and y. 
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Theorem: Power Rule for Rational Powers 

If p/q is a rational number, then qpx /  is differentiable at every 

interior point of the domain of 1)/( qpx , and 
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Derivative of Inverse Trigonometric Functions 
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Example   

Differentiate xxy 12 tan . 

Solution  
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Derivatives of Logarithmic Function 

Rule 1: 
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Rule 4:  The Power Rule 

If n is any real number and nxxf )( , then 
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Example  

Differentiate xxy  . 

Solution  

Using logarithmic differentiation, we have 

  xxxy x lnlnln  . 

Differentiating implicitly with respect to x gives 

  
x

x
x

x
y
y

2
1ln1




 

  





 






 

x
x

x
x

x
x

x
yy x

2
ln1

2
ln1

. 

 

Rule 5: 
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