MATH 110

Chapter 4

Definition 4.1.1: Derivative Function

The function f^{\prime} defined by the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Is called the derivative of f with respect to x. The domain of f^{\prime} consists of all \boldsymbol{x} in the domain of \boldsymbol{f} for which the limit exists.

Alternative formula for the Derivative

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

Example

Find the derivative with respect to \boldsymbol{x} of $f(x)=x^{2}+4$.
Solution Here we have $f(x)=x^{2}+4$, so

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+4\right]-\left[x^{2}+4\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+4-x^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x .
\end{aligned}
$$

A function \boldsymbol{f} is differentiable at \boldsymbol{a} if $f^{\prime}(a)$ exists. It is differentiable on an open interval ($\boldsymbol{a}, \boldsymbol{b}$) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)]$ if it is differentiable at every number in the interval. It is differentiable on a closed interval $[a, b]$ if it is differentiable on the interior (a, b) and if the limits

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h} & \text { Right-hand derivative at } a \\
\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h} & \text { Left-hand derivative at } \boldsymbol{b}
\end{array}
$$

exist at the endpoints.

Example

Show that the function $f(x)=x$ is not differentiable at $x=0$ and find a formula for $f^{\prime}(x)$.
Solution

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h-0}{h}=\lim _{h \rightarrow 0} \frac{h}{h} .
\end{aligned}
$$

But

$$
\frac{h}{h}=\left\{\begin{array}{rl}
1, & h>0 \\
-1, & h<0
\end{array} .\right.
$$

Then

$$
\lim _{h \rightarrow 0^{-}} \frac{h}{h}=-1 \quad \text { and } \quad \lim _{h \rightarrow 0^{+}} \frac{h}{h}=1 .
$$

Since these one-sided limits are not equal, the two-sided limit does not exist, and hence f is not differentiable at $x=0$.

Theorem: Differentiability Implies Continuity

If a function \boldsymbol{f} is differentiable at \boldsymbol{c}, then \boldsymbol{f} is continuous at \boldsymbol{c}.
Defferentiation Rules
In Section 4.1 we defined the derivative of a function f as a limit, and we used that limit to calculate a few simple derivatives. In this section we introduce a few rules that allow us to differentiate a great variety of functions. These rules will enable us to calculate derivatives more efficiently.

Rule 1: \quad Derivative of a Constant Function

The derivative of a constant function $f(x)=c$ is zero; that is

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}(c)=0 .
$$

Rule 2: Power Rule for Positive Integers

If \boldsymbol{n} is a positive integer, then

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{n}=n x^{n-1}
$$

Rule 3: Constant Multiple Rule

If \boldsymbol{f} is a differentiable function of \boldsymbol{x}, and \boldsymbol{c} is a constant, then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[c f(x)]=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x) .
$$

Rule 4: Sum and Difference Rule

If \boldsymbol{f} and \boldsymbol{g} are differentiable at \boldsymbol{x}, then so are $f+g$ and $f-g$ and

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x)+g(x)]=\frac{\mathrm{d}}{\mathrm{~d} x} f(x)+\frac{\mathrm{d}}{\mathrm{~d} x} g(x), \\
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x)-g(x)]=\frac{\mathrm{d}}{\mathrm{~d} x} f(x)-\frac{\mathrm{d}}{\mathrm{~d} x} g(x) .
\end{gathered}
$$

Example

If $y=2 x^{3}+\frac{3}{2} x^{2}-3 x+7$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
Solution

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(2 x^{3}+\frac{3}{2} x^{2}-3 x+7\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(2 x^{3}\right)+\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{3}{2} x^{2}\right)+\frac{\mathrm{d}}{\mathrm{~d} x}(-3 x)+\frac{\mathrm{d}}{\mathrm{~d} x}(7) \\
& =2\left(3 x^{2}\right)+\frac{3}{2}(2 x)-3(1)+0=6 x^{2}+3 x-3
\end{aligned}
$$

Rule 5:

Derivative Product Rule

If \boldsymbol{f} and \boldsymbol{g} are differentiable at \boldsymbol{x}, then so is their product $f g$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) g(x)]=f(x) \frac{\mathrm{d}}{\mathrm{~d} x} g(x)+g(x) \frac{\mathrm{d}}{\mathrm{~d} x} f(x)
$$

Example

If $y=\left(x^{3}+3\right)\left(x^{2}-1\right)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Solution

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(x^{3}+3\right)\left(x^{2}-1\right)\right] \\
&=\left(x^{3}+3\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}-1\right)+\left(x^{2}-1\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3}+3\right) \\
&=\left(x^{3}+3\right)(2 x)+\left(x^{2}-1\right)\left(3 x^{2}\right) \\
&=2 x^{4}+6 x+3 x^{4}-3 x^{2} \\
&=5 x^{4}-3 x^{2}+6 x
\end{aligned}
$$

If \boldsymbol{f} and \boldsymbol{g} are differentiable at \boldsymbol{x} and if $g(x) \neq 0$, then the quotient
f / g is differentiable at x, and

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

Example

If $y=\frac{x^{2}+3 x-1}{x^{3}+3}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Solution

Applying the Quotient Rule yields

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{x^{2}+3 x-1}{x^{3}+3}\right] \\
& =\frac{\left(x^{3}+3\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+3 x-1\right)-\left(x^{2}+3 x-1\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3}+3\right)}{\left(x^{3}+3\right)^{2}} \\
& =\frac{\left(x^{3}+3\right)(2 x+3)-\left(x^{2}+3 x-1\right)\left(3 x^{2}\right)}{\left(x^{3}+3\right)^{2}} \\
& =\frac{\left(2 x^{4}+3 x^{3}+6 x+9\right)-\left(3 x^{4}+9 x^{3}-3 x^{2}\right)}{\left(x^{3}+3\right)^{2}} \\
& =\frac{-x^{4}-6 x^{3}+3 x^{2}+6 x+9}{\left(x^{3}+3\right)^{2}}
\end{aligned}
$$

Example Finding Higher Derivatives

The first five derivatives of $y=x^{5}-2 x^{3}+3 x^{2}+x-1$ are
$1^{\text {st }}$ derivative: $y^{\prime}=5 x^{4}-6 x^{2}+6 x+1$
$2^{\text {nd }}$ derivative: $y^{\prime \prime}=2 x^{3}-12 x+6$
$3^{\text {rd }}$ derivative: $y^{\prime \prime \prime}=60 x^{2}-12$
$4^{\text {th }}$ derivative: $y^{(4)}=12 \alpha$
$5^{\text {th }}$ derivative: $y^{(5)}=120$
The function has derivatives of all order, the $6^{\text {th }}$ and later derivatives all being zero. So,

$$
\begin{gathered}
y^{(6)}=0 \\
\vdots \\
y^{(n)}=0 \quad(n \geq 6) .
\end{gathered}
$$

Derivatives of Trigonometric Functions

Theorem 4.4.1: Derivative of Trigonometric Functions

$$
\begin{array}{ll}
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin x)=\cos x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\csc x)=-\csc x \cot x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x)=-\sin x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\sec x)=\sec x \tan x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x & \frac{\mathrm{~d}}{\mathrm{~d} x}(\cot x)=-\csc ^{2} x
\end{array}
$$

Example Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if, $y=\sin x-x^{3}$.

Solution

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin x-x^{3}\right)=\frac{\mathrm{d}}{\mathrm{d} x}(\sin x)-\frac{\mathrm{d}}{\mathrm{d} x} x^{3}=\cos x-3 x^{2}$.

Example Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if, $y=\cos x+2 x^{2}$.

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\cos x+2 x^{2}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}(\cos x)+4 x=-\sin x+4 x .
$$

Example

Find $y^{\prime \prime}$ if $y=\csc x$.

Solution

$$
y^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} x}(\csc x)=-\csc x \cot x .
$$

Then,

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\mathrm{d}}{\mathrm{~d} x}(-\csc x \cot x) \\
& =-\csc x \frac{\mathrm{~d}}{\mathrm{~d} x}(\cot x)-\cot x \frac{\mathrm{~d}}{\mathrm{~d} x}(\csc x) \\
& =-\csc x\left(-\csc ^{2} x\right)-\cot x(-\csc x \cot x) \\
& =\csc x\left(\csc ^{2} x+\cot ^{2} x\right) .
\end{aligned}
$$

Example Finding repeated derivatives

Find the $49{ }^{\text {th }}$ derivative of $\sin x$.

Solution

The first few derivatives of $f(x)=\sin x$ are as follows:

$$
\begin{aligned}
& f^{\prime}(x)=\cos x \\
& f^{\prime \prime}(x)=-\sin x \\
& f^{\prime \prime \prime}(x)=-\cos x \\
& f^{(4)}(x)=\sin x \\
& f^{(5)}(x)=-\cos x
\end{aligned}
$$

Note that the successive derivatives occur in a cycle of length 4 and, in particular, $f^{(n)}(x)=\sin x$ whenever \boldsymbol{n} is a multiple of 4 . Therefore

$$
\begin{aligned}
& f^{(48)}(x)=\sin x \\
& f^{(49)}(x)=\cos x .
\end{aligned}
$$

The Chain Rule and Parametric Equations

Theorem: The Chain Rule

If \boldsymbol{g} is differentiable at \boldsymbol{x} and \boldsymbol{f} is differentiable at $\boldsymbol{g}(\boldsymbol{x})$, then the composite function $F=f \circ g$ defined by $F(x)=f(g(x))$ is differentiable at x and F^{\prime} is given by the product

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz notation, if $y=f(u)$ and $u=g(x)$ are both differentiable functions, then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x} .
$$

Example Applying the Chain Rule

Find $F^{\prime}(x)$ if $F(x)=\sqrt{x^{3}-1}$.
Solution

If we let $u=x^{3}-1$ and $y=\sqrt{u}$, then
$F^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{2 \sqrt{u}} \cdot 3 x^{2}=\frac{1}{2 \sqrt{x^{3}-1}} \cdot 3 x^{2}=\frac{3 x^{2}}{2 \sqrt{x^{3}-1}}$.

The Chain Rule with Powers of a Function
If \boldsymbol{n} is any real number and $u=g(x)$ is differentiable, then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(u^{n}\right)=n u^{n-1} \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

Alternatively

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[g(x)]^{n}=n[g(x)]^{n-1} \cdot g^{\prime}(x)
$$

More generally, the Chain Rule gives

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{u}\right)=\mathrm{e}^{u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

Example Differentiate an exponential function with natural base.

Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\mathrm{e}^{\sin x}$.
Solution
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^{\sin x}=\mathrm{e}^{\sin x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} \sin x=\mathrm{e}^{\sin x} \cdot \cos x=\cos x \mathrm{e}^{\sin x}$.

We can use the Chain Rule to differentiate an exponential function with any base $\boldsymbol{a}>\mathbf{0}$. Note that

$$
a^{x}=\left(\mathrm{e}^{\ln a}\right)^{x}=\mathrm{e}^{(\ln a) x}
$$

and the Chain Rule gives

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} a^{x} & =\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{(\ln a) x}=\mathrm{e}^{(\ln a) x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}(\ln a) x \\
& =\mathrm{e}^{(\ln a) x} \cdot \ln a=a^{x} \ln a
\end{aligned}
$$

Definition: Parametric Curve
If \boldsymbol{x} and \boldsymbol{y} are given as functions

$$
x=f(t), \quad y=g(t)
$$

over an interval of \boldsymbol{t}-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equations is a parametric curve. The equations are parametric equations for the curve

Example 10 Moving counterclockwise on a circle.

Graph the parametric curve $x=r \cos t, y=r \sin t, 0 \leq t \leq 2 \pi$.

Solution

Since $x^{2}+y^{2}=r^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=r^{2}$, the parametric curves lie along the circle of radius r. The parameterization describes a motion that being at the point $(\boldsymbol{r}, \mathbf{0})$ and transverse the circle $x^{2}+y^{2}=r^{2}$ once counterclockwise, retuning to $(\boldsymbol{r}, \mathbf{0})$ at $t=2 \pi$.

A parametrized curve $x=f(t)$ and $y=g(t)$ is differentiable at \boldsymbol{t} if \boldsymbol{f} and \boldsymbol{g} are differentiable at \boldsymbol{t}. At a point on a differentiable parametrized curve where y is also a differentiable function of x, the derivative $\mathrm{d} y / \mathrm{d} t, \mathrm{~d} x / \mathrm{d} t$, and $\mathrm{d} y / \mathrm{d} x$ are related by the Chain Rule:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t} .
$$

Example Differentiating with a parameter.

If $x=t^{2}-3$ and $y=2 t+5$, find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $\boldsymbol{t}=\mathbf{2}$.

Solution

Since

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x . / \mathrm{d} t}=\frac{2}{2 t}=\frac{1}{t} .
$$

Then

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{t=2}=\frac{1}{2} .
$$

Example

Find $y^{\prime \prime}$ if $3 x^{2}-y^{3}=4$.
Solution

To start, we differentiate both sides of the equation with respect to \boldsymbol{x} in order to find $y^{\prime}=\mathrm{d} y / \mathrm{d} x$.

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(3 x^{2}-y^{3}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}(4) \\
& 6 x-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 x}{y^{2}}, \quad y \neq 0 .
\end{aligned}
$$

We now apply the Quotient Rule to find $y^{\prime \prime}$.

$$
y^{\prime \prime}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{2 x}{y^{2}}\right)=\frac{y^{2}(2)-2 x\left(2 y y^{\prime}\right)}{\left(y^{2}\right)^{2}}=\frac{2 y^{2}-4 x y y^{\prime}}{y^{4}}=\frac{2}{y^{2}}-\frac{4 x}{y^{3}} y^{\prime}
$$

Finally, we substitute $y^{\prime}=2 x / y^{2}$ to express $y^{\prime \prime}$ in terms of x and y.
$y^{\prime \prime}=\frac{2}{y^{2}}-\frac{4 x}{y^{3}} \frac{2 x}{y^{2}}=\frac{2}{y^{2}}-\frac{8 x^{2}}{y^{5}}$.

Theorem:

 Power Rule for Rational PowersIf $\boldsymbol{p} / \boldsymbol{q}$ is a rational number, then $x^{p / q}$ is differentiable at every interior point of the domain of $x^{(p / q)-1}$, and

$$
\frac{\mathrm{d}}{\mathrm{~d} x} x^{p / q}=\frac{p}{q} x^{(p / q)-1}
$$

Derivative of Inverse Trigonometric Functions

$$
\begin{array}{ll}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\csc ^{-1} x\right)=-\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}
\end{array}
$$

Example

Differentiate $y=x^{2} \tan ^{-1} \sqrt{x}$.

Solution

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} \tan ^{-1} \sqrt{x}\right) \\
& =x^{2} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\tan ^{-1} \sqrt{x}\right)+\tan ^{-1} \sqrt{x} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{2} \\
& =x^{2} \frac{1}{1+(\sqrt{x})^{2}} \frac{\mathrm{~d}}{\mathrm{~d} x}(\sqrt{x})+\tan ^{-1} \sqrt{x}(2 x) \\
& =\frac{x^{2}}{2 \sqrt{x}(1+x)}+2 x \tan ^{-1} \sqrt{x} \\
& =\frac{x^{3 / 2}}{2(1+x)}+2 x \tan ^{-1} \sqrt{x} .
\end{aligned}
$$

Derivatives of Logarithmic Function

Rule 1:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\log _{a} x\right)=\frac{1}{x \ln a} .
$$

Rule 2:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln x)=\frac{1}{x}
$$

Rule 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln u)=\frac{1}{u} \frac{\mathrm{~d} u}{\mathrm{~d} x} .
$$

Example

Find $\frac{\mathrm{d}}{\mathrm{d} x} \ln (\cos x)$.
Solution

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (\cos x) & =\frac{1}{\cos x} \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x) \\
& =\frac{1}{\cos x}(-\sin x)=-\frac{\sin x}{\cos x}=-\tan x
\end{aligned}
$$

Rule 4: The Power Rule

If n is any real number and $f(x)=x^{n}$, then

$$
f^{\prime}(x)=n x^{n-1} .
$$

Example

Differentiate $y=x^{\sqrt{x}}$.

Solution

Using logarithmic differentiation, we have

$$
\ln y=\ln x^{\sqrt{x}}=\sqrt{x} \ln x
$$

Differentiating implicitly with respect to \boldsymbol{x} gives

$$
\begin{aligned}
& \frac{y^{\prime}}{y}=\sqrt{x} \cdot \frac{1}{x}+\ln x \cdot \frac{1}{2 \sqrt{x}} \\
& y^{\prime}=y\left(\frac{1}{\sqrt{x}}+\frac{\ln x}{2 \sqrt{x}}\right)=x^{\sqrt{x}}\left(\frac{1}{\sqrt{x}}+\frac{\ln x}{2 \sqrt{x}}\right) .
\end{aligned}
$$

Rule 5:

$$
\mathrm{e}=\lim _{x \rightarrow 0}(1+x)^{1 / x} .
$$

Rule 6:

$$
\mathrm{e}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} .
$$

