Phys 110

Dr Reem Altuwirqi

raltuwirgi@kau.edu.sa

Office hours:
S-M-W 11 am - 1 pm
http://raltuwirgi.kau.edu.sa
Coordinator
Dr Hana Farhan
http://hfarhan.kau.edu.sa

Read the book Think!

Ask questions
Attend the tutorials Information is key
No pain no gain ©

Important Information

- اسم الكتاب: Edition $/ 8^{\text {th }}$ Fundamentals of physics, by Halliday \& Resnick في مكتبة خوارزم تصوير أول 10 فصول لعدم توفر النسخة في المكتبات) - توزيع المنهج: (موجود بالموقع) (الفصول 1-2-3-4-5-6-7-9) - توزيع الدرجات:

الدوري الاول 30 درجه + 3 درجات بونس (الفصول 1-2-3-3) نصفي 30 درجه + 30 درجات بوري بونس (الفصول 4-5-6)
النعائي 40 درجه + 4 درجاجات بونس (درجا بـميع الفصول)

- أهداف المنهـج علي موقع المنسقة - مواعيد الاختبارات وأماكنـها تحدد لاحقاً من قبل الشؤون التعليميه وستعلن في موقع المنسقه في حينه - نظام الحضور والغياب هو نفس نظام الجامعه - يمنع عملية التحويل والتنقل بين الشعب إلا لظروف قاهرة -ضرورة مراجعة موقع المنسقه (الته (hfarhan.kau.edu.sa) بشـوكل مستمر - محاضرات حلول التمارين (السـكاشـن) ستعقد يومياً من السـاعه 12-1 ما ما عدا يوم الاربعاء
 والغرف) (شعبتنا الأحد 12-1). -ضرورة طباعة التمارين من الموقع وضرورة حلّها قبل الحضور لمحاضرة السيكشـن ومناقشتـبا.

Chapter 1

Measurements

Objectives

After this lecture you should be able to...
Differentiate \longrightarrow Between base and derived quantities
Explain \longrightarrow Standards of measurements
Define \longrightarrow The International system of units
Convert \longrightarrow Units using the chain-link method
Apply \longleftrightarrow The scientific notation to numbers

Physical Quantities

Physics is based on measurement of Physical Quantities.
For example: length, time, mass, temperature, pressure.

Assumed to be independent of each other.

Length, mass and time.

Derived quantities

Defined in terms of base quantities via equations.

$$
\text { Velocity }=\frac{\text { Length }}{\text { Time }}
$$

Physical Quantities

The International System of Units (SI)

Based on the General Conference on Weight and Measurements In 1971.

Base Quantities	Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	$\mathbf{K g}$	
Units of base quantities	Length	Meter	\mathbf{m}
Standards of base quantities	Temperature	Kelvin	K

Standards of Base Quantities

Length:
A meter is the length of the path traveled by Light in a vacuum during a time interval of
1/299792458 of a second.

Time:
A Second is the time taken by 9192631770 oscillations of the light (of specified wavelength) emitted by cesium-133 atom.

Mass:
A kilogram is the mass of a paltinum-irradium cylinder 3.9 cm in height and diameter kept near Paris.

Scientific Notations

For large or small numbers

$>3560000000.0 \mathrm{~m}=3.56 \times 10$
 $>0.00000492 \mathrm{~s}=4.92 \times 10 \mathrm{~s}$

Scientific Notations

- Example

Express 0.00592 in scientific notation.
a) 5.92×10^{3}
b) 5.92×10^{-3}
c) 5.92×10^{-2}
d) 5.92×10^{-5}
e) 5.92×10^{5}

Scientific Notations

- Example

Express 0.00592 in scientific notation.
a) 5.92×10^{3}
b) 5.92×10^{-3}
c) 5.92×10^{-2}
d) 5.92×10^{-5}
e) 5.92×10^{5}

Scientific Notations

Using prefixes

nano micro milli centi desi n μ m c d deka hecto kilo mega giga da h k M G $3.56 \times 10^{9} \mathrm{~m} \quad$ giga $\rightarrow \mathrm{G} \quad 3.56 \mathrm{Gm}$

$$
4.92 \times 10^{-6} \mathrm{~s}=4.92 \mu \mathrm{~s}
$$

Conversion between units

Chain-link conversion

Convert 2 min to s?

$$
1 \mathrm{~min}=60 s
$$

$\frac{1 \mathrm{~min}}{1 \mathrm{~min}}=\frac{60 s}{1 \mathrm{~min}}$
\Rightarrow

Conversion factor: is the ratio of units that equal unity
$2 \mathrm{~min} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=120 \mathrm{~s}$

Unit Conversion

- Example

A section of a river can be approximated as a rectangle that is 20 m wide and 30 m long. Express the area of this river in square kilometers.
a) $600 \mathrm{~km}^{2}$
b) $6 \mathrm{~km}^{2}$
c) $6 \times 10^{-2} \mathrm{~km}^{2}$
d) $6 \times 10^{-4} \mathrm{~km}^{2}$
e) $6 \times 10^{+4} \mathrm{~km}^{2}$

Unit Conversion

- Example

A section of a river can be approximated as a rectangle that is 20 m wide and 30 m long. Express the area of this river in square kilometers.
a) $600 \mathrm{~km}^{2}$
b) $6 \mathrm{~km}^{2}$
c) $6 \times 10^{-2} \mathrm{~km}^{2}$
d) $6 \times 10^{-4} \mathrm{~km}^{2}$
e) $6 \times 10^{+4} \mathrm{~km}^{2}$

Unit Conversion

- Example

Consider each of the following comparisons between various time units. Which one of these comparisons is false?
a) $84600 \mathrm{~s}=1$ day
b) $1 \mathrm{~h}>3000 \mathrm{~s}$
c) $1 \mathrm{~ns}>1000 \mu \mathrm{~s}$
d) $1 \mathrm{~s}=1000 \mathrm{~ms}$
e) $1 \mathrm{y}=5.26 \times 10^{5} \mathrm{~h}$

Unit Conversion

- Example

Consider each of the following comparisons between various time units. Which one of these comparisons is false?
a) $84600 \mathrm{~s}=1$ day
b) $1 \mathrm{~h}>3000 \mathrm{~s}$
c) $1 \mathrm{~ns}>1000 \mu \mathrm{~s}$
d) $1 \mathrm{~s}=1000 \mathrm{~ms}$
e) $1 \mathrm{y}=5.26 \times 10^{5} \mathrm{~h}$

The End

