Exercise Sheet 1

Exercise 1 Classify each of the following PDE (order, linear, homogenous and nonhomogenous):

1. $u_{x}+u_{y}=\cos x$.
2. $x^{2} u_{x}+y^{2} u_{y}+u_{x y}=2 x y$.
3. $(x-y) u_{x}+u_{x y}=1$.
4. $x^{2} u_{y y}-y u_{x x}=0$.
5. $u_{x}+u_{y}-u_{x x}=4$.
6. $u_{x}+u_{y}=u$.
7. $u_{x y}-u_{x}+u_{y}-\sin (x+y) u=0$.
8. $x^{2} u_{x y}+u_{y}=10 u$.
9. $\cos x u_{x}+u_{y}=0$.

Exercise 2 Classify each of the following PDE (hyperbolic, parabolic and elliptic):

1. $u_{x x}+2 x u_{x y}+x^{2} u_{y y}+u=0$.
2. $x e^{x} u_{x x}+x^{3} u_{y y}+\ln x u_{y}=0$.
3. $y^{2} u_{x x}+5 x y u_{x y}+x^{2} u_{y y}+\sin x=0$.

Exercise 3 Show that $u(x, t)=f(x+c t)+g(x-c t)$ is a solution of $u_{t t}=c^{2} u_{x x}$ for any twice differentiable functions f and g of one variable. c is a positive constant.

Exercise 4 Show that $u(x, y)=\ln \left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)$ satisfies Laplace's equation $u_{x x}+u_{y y}=0$ for all pairs (x, y) of real numbers except $\left(x_{0}, y_{0}\right)$.

Exercise 5 Find the solution to $u_{x y}=x^{2}$ cosy, subject to the condition $u_{x}(x, 0)=e^{x}$ and $u(0, y)=1$.

Exercise 6 Find the solution to $u_{x x}+t^{2} u=0$, subject to the condition $u(0, t)=e^{t}$ and $u_{x}(0, t)=t^{2}(t>0$ and $u=u(x, t))$.

Exercise 7 Find the general solution to $x u_{y}+y u=0$.

