

Consider the following reaction: $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$

A. How many molecules of oxygen are required to react with 6 molecules of C_2H_6 ?

2 molecules $C_2H_6 == 7$ molecules O_2 6 molecules $C_2H_6 == X$ molecules O_2

 $X = 6 \times 7 / 2 = 21$ molecules

B. How many molecules of water are produced when 12 molecules of CO_2 are produced?

4 molecules CO_2 == 6 molecules H_2O 12 molecules $CO_2 == X$ molecules H_2O

 $X = 12 \times 6 / 4 = 18$ molecules

C. If 20.0 mol of oxygen gas react, how many moles of water are produced?

$$2C_{2}H_{6}(g) + 7O_{2}(g) \rightarrow 4CO_{2}(g) + 6H_{2}O(g)$$

 $7 \operatorname{mol} \mathbf{O}_2 == 6 \operatorname{mol} \mathbf{H}_2 \mathbf{O}$ $20 \operatorname{mol} \mathbf{O}_2 == \mathbf{X} \operatorname{mol} \mathbf{H}_2 \mathbf{O}$

X = 20 x 6 /7 =17.14 mol

D. If 15.0 mol of CO_2 are produced, how many moles of C_2H_6 react?

$$2C_{2}H_{6}(g) + 7O_{2}(g) \rightarrow 4CO_{2}(g) + 6H_{2}O(g)$$

 $2 \mod C_2 H_6 == 4 \mod CO_2$ X mol $C_2 H_6 == 15.0 \mod CO_2$

X = 15.0 x 2 /4 =7.5 mol

E. How many grams of CO_2 are formed when 90.0 g of C_2H_6 react with an excess of oxygen?

$$2C_{2}H_{6}(g) + 7O_{2}(g) \rightarrow 4CO_{2}(g) + 6H_{2}O(g)$$

Excess of O_2 : means is the C_2H_6 **limiting reagent**

$$2 \mod C_2 H_6 = 4 \mod CO_2$$
$$\frac{90.0}{30} = 3.00 \mod C_2 H_6 = X \mod CO_2$$

 $X = 3.00 \times 4 / 2 = 6 \mod 6 \times 44 = 264 g$

F. How many grams of O_2 are needed to burn 90.0 g of C_2H_6 ?

G. How many grams of O_2 are necessary to produce 9.03×10^{21} molecules of CO_2 ?

 $9.03 \times 10^{21} \text{ molecules } CO_2 =$ $\frac{9.03 \times 10^{21} \text{ molecules}}{6.02 \times 10^{23} \text{ molecules / mol}} = 0.015 \text{ mol}$

7 mol $O_2 == 4 \mod CO_2$ X mol $O_2 == 0.015 \mod CO_2$

 $X = 0.026 \text{ mol} \rightarrow 0.026 \text{ x} 32 = 0.84 \text{ g}$

H. If 15.0 mol of CO_2 were collected at 300 °C in 5-litter vessel, what is the pressure of CO_2 ?

 $\mathbf{PV} = \mathbf{nRT}$

$$P = \frac{nRT}{V} = \frac{15 \times 0.082 \times 573}{5} = 141atm.$$

Problem 2

At a certain temperature the reaction, $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$ has Kc = 0.400 Exactly 1.00 mol of each gas was placed in a 100-liter vessel

and allowed to react.

1. What was the direction of the reaction immediately after the gases were mixed?

2. What were the equilibrium concentrations of each gas?3. What is the effect of pressure increase on Kc?

1.
$$Q = \frac{1.00 \times 1.00}{1.00 \times 1.00} = 1.00$$
 Q > K_c

Right \rightarrow left

centrations	. What wer	e the equilibri	um conc	entrations	of each gas?
Unitial	<i>CO</i> (<i>g</i>) 0.01M	$+H_2O(g)$ 0.01M		<i>CO</i> ₂ (<i>g</i> 0.01M	$(H_{2}(g)) + H_{2}(g)$ 0.01M
Change	+ X	$+ \mathbf{X}$		- X	- X
Equilibrium	1+X	1+X		1-X	1-X

$$K_{c} = \frac{\left[CO_{2}\right]\left[H_{2}\right]}{\left[CO\right]\left[H_{2}O\right]} = \frac{\left(1-X\right)\left(1-X\right)}{\left(1+X\right)} = 0.400$$

$$K_{c} = \frac{(1-X)^{2}}{(1+X)^{2}} = 0.400$$

$$\left(\frac{\left(1-X\right)}{\left(1+X\right)}\right)^2 = 0.400$$

 $[CO]=[H_2O]=1.227 \times 10^{-2} \text{ M}$ $[CO_2]=[H_2]=0.773 \times 10^{-2} \text{ M}$

3. What is the effect of pressure increase on K_c?

$CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$

NO effect

Problem 3

An automobile tire is inflated with air at 22°C to a pressure of 1.8 atm. After the car is driven for several hours, the volume of the tire increases from 7.2 L to 7.8 L and the pressure increases to 1.9 atm. Calculate the temperature of the air inside the tire.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$
$$\frac{1.8 \times 7.2}{(22 + 273)} = \frac{1.9 \times 7.8}{T_2}$$

$$T_2 = 337.3 \text{ K}$$

Problem 4

For an alkaline solution of ammonium hydroxide, $[OH^-]=1.8 \times 10^{-3}$ M, and $K_b = 1.8 \times 10^{-5}$, answer the following questions:

1. Calculate the concentration of ammonium hydroxide (NH_4OH)

2. Calculate the pH for the solution

3. If ammonium hydroxide was one of the components of a buffer solution, write a possible chemical formula for the second component.

4. Calculate the pH for the mentioned buffer solution if the concentration of ammonium hydroxide is 0.8 mol/L and the concentration of the second component is 0.6 mol/L.

$$\left[OH^{-}\right] = \sqrt{K_b C_b}$$

$$C_{b} = 0.18$$

2. Calculate the pH for the solution $[OH^-]=1.8 \times 10^{-3}$

 $pOH = -log \ 1.8x10^{-3}$

pH = 11.26

3. If ammonium hydroxide was one of the components of a buffer solution, write a possible chemical formula for the second component.

NH₄Cl

4. Calculate the pH for the mentioned buffer solution if the concentration of ammonium hydroxide is 0.8 mol/L and the concentration of the second component is 0.6 mol/L.

$$pOH = pK_b + \log \frac{[salt]}{[base]}$$

$$\mathbf{pH} = 9.38$$

For the ion OF⁺

a)Determine the number of bonds between the two atoms.

(a) Total valence electrons = 6 + 7 - 1 = 12

(b) # electrons required for individual atoms $2 \times 8 = 16$

(c) Number of shared electrons = 16 - 12 = 4

(d) Number of covalent bonds = 4/2 = 2 bonds

(e) Number of unshared electrons = 12 - 4 = 8 electrons

b) Calculate the formal charge on each atom.

Formal charges: F = 7 - [2+4]=+1

O = 6 - [2+4] = 0

c) Draw a molecular orbital energy-level diagram

- d) State the bond order.
- e) State the magnetic property.

f) Use the VSEPR theory to predict the geometric shape

Linear

g) What type of hybrid orbitals are employed by oxygen atom in the ion

sp2

h) Compare between the two atoms in terms of ionization energy and atomic volume (>, =, <)

Atomic volume: F<O

Ionization E : F>O

2) For the reaction:

 $2CaSO_4(s) \Rightarrow 2CaO(s) + 2SO_2(g) + O_2(g), K_p =$ a) K_c b) K_c (RT) c) ${}^{P}SO_4 {}^{P}O_2$ d) K_c (RT)³

3) A sample of 1.50 moles of CH_4 gas contains how many <u>atoms</u> of hydrogen?

(a)
$$3.61 \ge 10^{24}$$
 (b) $2.40 \ge 10^{24}$

(c) 1.20 x 10^{24} (d) 6.02 x 10^{23}

4) 9.10 g of AgNO₃ is dissolved in water and the solution is diluted to the 500 mL mark in a volumetric flask. What is the molarity of the AgNO₃ solution?

(a) **0.669** M (b) **0.309** M

(c) 0.193 M (d) 0.107 M

5) How many moles of ions are there per mole of $Al_2(SO_4)_3$?

8) What is the volume of 1.00 mole of an ideal gas at 25°C and one atmosphere pressure?

(a) 0.0409 L (b) 2.05 L

(c) 22.4 L

(d) 24.4 L