King AbdulAziz University, Department of Chemistry
Second semester 1422-1423 Thursday 21/1/1423H
Chem 101, General exam
Time: 1 hour

$\stackrel{1}{\substack{1 \\ \text { Hydiof }}}$		PERIODIC TAB															$\underset{\substack{\text { Helium } \\ 2}}{\text { He}}$
$\begin{array}{\|c\|} \hline 7 \\ \mathbf{L i}^{2} \\ \text { Lutiuid } \end{array}$												11 \mathbf{B} Boon 5	${ }_{\substack{12 \\ \text { catan } \\ 6 \\ \hline}}$	${ }_{\substack{\text { che } \\ \text { Niroges } \\ 7}}^{14}$	16 O Oxyen 8	$\underset{\substack{\text { flowine } \\ 9}}{19}$	${ }_{\substack{\text { Nen } \\ \text { Nen } \\ \text { N0 }}}$
$\begin{gathered} 23 \\ \mathrm{c}_{\substack{\text { saind } \\ 11 \\ 11}} \end{gathered}$												$\begin{array}{\|c} \hline 27 \\ \begin{array}{c} \text { Aluminu } \\ \text { al } \\ 13 \end{array} \end{array}$	$\begin{gathered} 28 \\ \hline \begin{array}{c} \text { Silicon } \\ \text { Sic } \\ \hline \end{array} \end{gathered}$	$\begin{gathered} 31 \\ \substack{\text { Phiosponan } \\ 15} \end{gathered}$	$\begin{array}{\|c} \hline 32 \\ \hline \text { Sulur } \\ 16 \\ \hline \mathbf{S} \\ \hline \end{array}$	$\underset{\substack{35.5 \\ \text { Chlominuin } \\ \text { Cl }}}{ }$	40 Ar Argm 18
	$\begin{gathered} 40 \\ \text { Ca } \\ \text { Calcium } \\ \text { 20 } \end{gathered}$	$\begin{gathered} \substack{45 \\ \text { Scandiun } \\ \text { cin } \\ 21} \end{gathered}$	$\begin{gathered} 48 \\ \hline \text { Tinium } \\ \text { Thinim } \end{gathered}$	$\begin{array}{\|c} \hline 51 \\ \mathbf{V} \\ \mathbf{V} \text { vanation } \\ 23 \end{array}$			$\begin{aligned} & 56 \\ & \begin{array}{c} 56 \\ \text { Hen } \\ 26 \end{array} \\ & \hline 26 \end{aligned}$	$\begin{gathered} 59 \\ \mathbf{C o} \\ \text { Cobatut } \\ 27 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Ni} \\ \substack{\text { Nivel } \\ 28} \end{gathered}$	$\begin{gathered} 63.5 \\ \left.\begin{array}{c} 6 \text { Cuper } \\ 29 \\ 29 \end{array} \right\rvert\, \end{gathered}$	$\begin{aligned} & 65 \\ & \mathbf{Z n} \\ & \begin{array}{c} \text { Znind } \\ 30 \end{array} \end{aligned}$			$\begin{aligned} & \text { 75 } \\ & \text { Anseric } \\ & \substack{\text { anc }} \end{aligned}$	$\begin{aligned} & \text { 79 } \\ & \text { See } \\ & \text { Seniener } \end{aligned}$	$\begin{aligned} & 80 \\ & \begin{array}{c} 80 \\ \text { Breninin } \\ \text { an } \end{array} \end{aligned}$	
$\begin{gathered} 85 . ⿹ \zh26 \\ \hline \text { Rub } \\ \text { Rubidit } \\ \text { B7 } \end{gathered}$	$\begin{gathered} 86 \\ \hline \text { Sranium } \\ 38 \\ 38 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Yyturim } \\ 39 \\ \hline \mathbf{Y} \\ \hline \end{array}$		$\begin{gathered} 93 \\ \text { Nob } \\ \text { Noise } \\ 41 \end{gathered}$		(96)	$\begin{gathered} 101 \\ \hline \mathbf{R u} \\ \begin{array}{c} \text { Rubuinu } \end{array} \\ \hline 4 . \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{R R} \\ \begin{array}{c} \text { Rodium } \\ 45 \end{array} \end{gathered}$	$\begin{gathered} 106 \\ \text { Perd } \\ \text { Palatiun } \\ 46 \end{gathered}$	$\begin{aligned} & 108 \\ & \mathbf{A g} \\ & \text { siver } \\ & 47 \end{aligned}$	112 Cd Casmin 48	$\begin{aligned} & 115 \\ & \text { In } \\ & \text { Indium } \\ & 49 \end{aligned}$	$\begin{aligned} & 119 \\ & \hline \mathbf{S n} \\ & \begin{array}{c} \text { In } \\ 50 \end{array} \end{aligned}$	$\begin{gathered} 122 \\ \left.\hline \begin{array}{c} \text { Antinom } \\ 51 \\ \hline \end{array}\right] \end{gathered}$	$\begin{gathered} 128 \\ \substack{\text { Telluinum } \\ 52} \end{gathered}$		
$\begin{aligned} & \hline 133 \\ & \mathbf{c s}^{\text {Ccsium }} \\ & 55 \end{aligned}$	$\begin{gathered} 137 \\ \text { Ba } \\ \text { Baxim } \\ 56 \end{gathered}$	$\begin{array}{r} 139 \\ \mathbf{L} \text { Lantauy } \\ \text { Lany } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Hfium } \\ \hline 1 \end{array}$	$\begin{gathered} \hline 181 \\ \text { Tana } \\ \text { Tamand } \\ 73 \end{gathered}$	$\begin{gathered} 184 \\ \mathbf{c} \\ \mathbf{T} \text { Tusse } \\ 74 \\ \hline \end{gathered}$	$\begin{gathered} 186 \\ \hline \mathbf{R e} \\ \text { Renenum } \\ 75 \end{gathered}$			$\begin{gathered} 195 \\ \hline \text { PPt } \\ \text { Pasinum } \\ 78 \end{gathered}$	$\begin{gathered} 197 \\ \hline \mathbf{A u} \\ \hline \begin{array}{c} \text { cod } \\ 79 \end{array} \end{gathered}$	201 Hg Meraly 80	$\begin{gathered} 204 \\ \text { TT1 } \left.\begin{array}{c} \text { Thallun } \\ 81 \end{array} \right\rvert\, \end{gathered}$	$\begin{aligned} & 207 \\ & \hline \mathbf{P b} \\ & \begin{array}{c} \text { Lead } \\ 82 \end{array} \end{aligned}$	209 Bismum Bismb 83	$\begin{gathered} \text { Pato } \\ \hline \text { Polonine } \\ 84 \end{gathered}$	$\underset{\substack{\text { Ansaine } \\ \text { A }}}{\text { (210) }}$	(222) $\mathbf{R n}$ Radon 86
((226) Ra Radium 88	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Actinu } \\ 89 \end{array}$		$\begin{gathered} \left(\begin{array}{c} \text { 262 } \\ \text { Dumin } \\ \text { Du } \\ 105 \end{array}\right. \\ \hline \end{gathered}$		${ }_{\substack{\text { (264) } \\ \text { Bh } \\ \text { Bobumum } \\ 107}}$	${ }_{\substack{\text { (265) } \\ \text { HS } \\ \text { Hassum } \\ 108}}$										

1. (8 points)

Consider hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$. (Show your work)

A	What is its molecular weight in grams?
B	What is its empirical (simple) formula?
C	How many $\underline{\text { moles are there in } 2.65 \mathrm{~g} \text { of hydrazine? }}$
D	
E	
	How many grams of hydrazine are there in 1.2×10^{27} molecules of hydrazine?
F	

2. (4 points)

(a) Consider the electronic transition from the principal quantum number $\mathrm{n}=4$ to $\mathrm{n}=1$ in the hydrogen atom. Is energy emitted or absorbed for this transition? What is the wavelength of the associated photon?
(b) List the various subshells, and the number of orbitals in each subshell, for the shell with a principal quantum number of 3 .

Shell	Subshells	Number of orbitals for each subshell
$\mathrm{n}=3$		

3. (4 points) In an experiment 489.6 g of BF_{3} were reacted with 160.2 g of $\mathrm{H}_{2} \mathrm{O}$, according to the following reaction:

$$
2 \mathrm{BF}_{3}(a q)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HF}(\mathrm{~g})
$$

a- What is the theoretical yield of $\mathrm{B}_{2} \mathrm{O}_{3}$ in grams?
b- How many moles of the excess reactant remain?

> \# moles of excess reactant =
c- If the reaction yield is 73%, what is the actual yield of $\mathrm{B}_{2} \mathrm{O}_{3}$ in grams?

$$
\text { Actual yield }\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)=
$$

4. (4 points)
a) Diagram the resonance forms of SCS ; assigning the formal charge on each atom, the C atom is the central atom.
b) Calculate the de Broglie wavelength of an electron traveling at 15% of the speed of light.

Consider hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$ (Show your work)

a. What is its molecular weight in grams?
$\mathrm{N}_{2} \mathrm{H}_{4}$
Molecular weight $=14 \times 2+4 \times 1=32 \mathrm{~g} / \mathrm{mol}$
b. What is its empirical (simple) formula?

NH

c. How many moles are there in 2.65 g of hydrazine?

$$
\# \text { moles }=\frac{2.65 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=0.083 \mathrm{~mol}
$$

d. How many grams of hydrazine are there in 1.2×10^{27} molecules of hydrazine?
$1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}=6.02 \times 10^{23}$ molecules X mol $=1.2 \times 10^{27}$ molecules

$$
\begin{array}{r}
x=\frac{1.2 \times 10^{27}}{6.02 \times 10^{23}}=2.0 \times 10^{3} \mathrm{~mol} \\
2.0 \times 10^{3} \times 32=6.4 \times 10^{4} \mathrm{~g}
\end{array}
$$

e. How many hydrogen atoms are there in 1.2×10^{27} molecules of hydrazine?

There are 4 H atoms in one $\mathrm{N}_{2} \mathrm{H}_{4}$ molecule

$$
1.2 \times 10^{27} \text { molecules : } 1.2 \times 10^{27} \times 4=
$$

$$
4.8 \times 10^{27} \mathrm{H} \text { atoms }
$$

f. How many grams of hydrogen can be obtained from 100.0 g of hydrazine ؟

$$
\% H=\frac{4 \times 1}{32} \times 100=12.5 \%
$$

In 100 g of hydrazine:

$$
\text { weight of hydrogen }=\frac{12.5}{100} \times 100=12.5 \mathrm{~g}
$$

g. How many neutrons are there in one molecule of hydrazine :

$$
\begin{aligned}
& { }_{1}^{1} \mathrm{H}: \text { zero neutrons } \\
& { }_{7}^{14} \mathrm{~N}: 14-7=7 \text { neutrons }
\end{aligned}
$$

In one molecule: $2 \times 7=14$ neutrons
h. What is the molar concentration of 0.02 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ in 439 mL of solution?

$$
\begin{gathered}
M=\frac{n}{V} \\
n=\frac{0.02 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=6.25 \times 10^{-4} \mathrm{~mol} \\
M=\frac{6.25 \times 10^{-4} \mathrm{~mol}}{0.439 \mathrm{~L}}=1.42 \times 10^{-3} \mathrm{M}
\end{gathered}
$$

(2.a)Consider the electronic transition From the principal quantum number $\mathrm{n}=4$ to $\mathrm{n}=1$ in the hydrogen atom.

Is energy emitted or absorbed for this transition? What is the wavelength of the associated photon?

Energy is emitted

$$
\begin{aligned}
v & =3.289 \times 10^{15} s^{-1}\left(\frac{1}{1^{2}}-\frac{1}{4^{2}}\right) \\
& =3.083 \times 10^{15} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& v=\frac{c}{\lambda} \Rightarrow \lambda=\frac{c}{v}= \\
& \frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{3.083 \times 10^{15} \mathrm{~s}^{-1}}=9.7 \times 10^{-8} \mathrm{~m}
\end{aligned}
$$

$$
=9.7 \times 10^{-8} \mathrm{~m} \times 10^{9} \mathrm{~nm} / \mathrm{m}=97 \mathrm{~nm}
$$

(2.b)List the various subshells, and the number of orbitals in each subshell, for the shell with a principal quantum number of 3 .

Shell(n)	Subshell Notation		Orbitals (m)	\#orbitals
3	0	$3 s$	0	1
	1	$3 p$	$-1,0,+1$	3
	2	$3 d$	$-2,-1,0,+1,+2$	5

3. In an experiment 489.6 g of BF_{3} were reacted with 160.2 g of $\mathrm{H}_{2} \mathrm{O}$, according to the following reaction:
$2 \mathrm{BF}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{HF}(\mathrm{g})$
a. What is the theoretical yield of $\mathrm{B}_{2} \mathrm{O}_{3}$ in grams?
\#moles of $\mathrm{BF}_{3}=\frac{489.6 \mathrm{~g}}{68 \mathrm{~g} / \mathrm{mol}}=7.2 \mathrm{~mol}$
\#moles of $\mathrm{H}_{2} \mathrm{O}=\frac{160.2 \mathrm{~g}}{18 \mathrm{~g} / \mathrm{mol}}=8.9 \mathrm{~mol}$
determine the limiting reagent
for BF_{3} : $\quad \frac{7.2}{2}=3.6$
for $\mathbf{H}_{\mathbf{2}} \mathbf{O}: \quad \frac{8.9}{3}=2.97 \quad$ (smaller ratio)
$\mathrm{H}_{2} \mathrm{O}$ is the limiting reagent

$3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=1 \mathbf{~ m o l ~ B} \mathrm{~B}_{2}$

 $8.9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=\mathrm{x} \mathrm{mol} \mathrm{B}_{2} \mathrm{O}_{3}$$$
\begin{aligned}
& x=\frac{8.9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times 1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{O}_{3}}{3 \mathrm{~mol} \mathrm{H}}{ }_{2} \mathrm{O} \\
&=2.97 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{O}_{3} \\
& 2.97 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{O}_{3}= \\
& 2.97 \mathrm{~mol} \times 70 \mathrm{~g} / \mathrm{mol}=208 \mathrm{~g}
\end{aligned}
$$

b. How many moles of the excess reactant remain?
$2 \mathrm{~mol} \mathrm{BF}_{3}=3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$x{\mathrm{~mol} \mathrm{BF}_{3}}=8.9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$x=\frac{8.9 \mathrm{~mol}_{\mathrm{H}} \mathrm{O} \times 2 \mathrm{~mol} \mathrm{BF}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}$
$=5.93 \mathrm{~mol} \mathrm{BF} 3$

$$
7.2-5.93=1.3 \mathrm{~mol}
$$

c. If the reaction yield is 73%, what is the actual yield of $\mathrm{B}_{2} \mathrm{O}_{3}$ in grams

Actual yield
 $\%$ yield $=\frac{\text { Actual } \text { yield }}{} \times 100$ theoretical yield

$$
\frac{73}{100}=\frac{\text { Actual yield }}{208}=151.8 \mathrm{~g}
$$

Calculate the de Broglie's wavelength of an electron traveling at 15% of the speed of light.

$$
\lambda=\frac{h}{m v}=
$$

$$
6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}
$$

$9.11 \times 10^{-31} \mathrm{~kg} \times 0.15 \times 3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

