King AbdulAziz University, Department of Chemistry Second semester 1422-1423 Thursday 21/1/1423H

Chem 101, General exam	Inester 1+22-1+25 Thursday	Time: 1 hour
Name:	Number:	Section:
Q1 (8 points)	Useful information:	
Q2 (4 points)Q3 (4 points)Q4 (4 points)Total (20 points)	Speed of light, $c = 3.0 \times 10^8$ m/ Planck's const., $h = 6.626 \times 10^7$ Avogadro's No., $N_a = 6.022 \times 10^7$ Energy const. for H atom B = Frequency const. for H atom E Mass of the electron, $m_e = 9.1$ Gas constant, $R = 0.082$ L atm	$^{-34}$ J.s 10^{23} mol ⁻¹ 2.179×10^{-18} J $3/h = 3.289 \times 10^{15}$ s ⁻¹ $1 \ge 10^{-31}$ kg

1 H Hydrogen 1 7 9 Li Beryllium 3 4		Key 12 Carbon	y 	Rel nea	ative a	tomic hole n	C TA mass umber				11 B Boron 5	12 C Carbo 6	n 14 N Nitrogen 7	n 16 Oxyger 8	19 F Flourine 9	4 He Helium 2 20 Neo 10
3 4 23 24 Na Mg Sodium 11 11 12 39 40	45	48	51	52	55	56	59	59	63.5	65	27 Al Aluminu 13 70	28 Si Silico 14 72.5	31 P Phosphor 15	32 S	35.5 Cl Chlorine 17 80	40 Ar Argon 18 84
SJ 40 K Ca Potassium Calcium 19 20 85.5 86	Scandium 21	Ti Titanium 22 91	Vanadiu 23	Cr	Mn	Fe		Ni Nickel 28	Cu Copper 29	Zn Zinc 30	Gallium 31	Germani 32	un Ass 33	Se	Br	Krypton 36
Rb RubidiumSr Strontium3738133137	Y Yttrium 39 139	Zr Zirconium 40 178.5	Nb Niobiu 41 181	n Molybdenu 42 184	Tc	Ru n Rutheniu 44	m Rhodium 45	Pd Palladium 46	Ag ^{Silver} 47 197	Cadmiun 48 201	In Indium 49 204	Sn ^{Tin} 50 207	Antimor 51 209	Te Telluriun 52 (210)	53	Xe _{Xenon} 54 (222)
Cs Ba Cesium Barium 55 56 (223) (226)	Lanthanum 57 (227)	(261)	Ta Tantalu 73 (262	n Tungsten 74) (266)	Re Rhenium 75 (264)	Os ^{Osmiur} 76	n Iridium 77	Platinum 78	Au _{Gold} 79	Hg Mercury 80	Tl ^{Thalliun} 81	Pb Lead 82	Bi Bismutl 83	Polonium 84	At Astatine 85	Rn _{Radon} 86
Fr Ra Francium Radium 87 88	Ac Actinium 89	Rf Rutherfordium 104	Dubniu 105	n Seaborgiu	n Bohrium 107	Hss Hassiur 108	n Meitneriu	157	159	162.5	165	167	169	173	175	
	-	58 232 Th	Pr aseodymium 59 231 Pa rotactinium	Nd Neodymium 60 238 U Uranium	Promethium 61 237 Np Neptunium	Sm Samarium 62 244 Pu Plutonium	Europium G 63 (243) Am	Gd adolinium 64 (247) Curium	65 (247) Bk	66 (251) Cf	Holmiun 67 (252) Es Einsteinium	Erbium 68 (257) Fermium	69 (258) Md	Ytterbium 70 (259) No	Lu Lutetium 71 (262) Fm wrencium	

А	der hydrazine, N2H4. (Show your work) What is its molecular weight in grams?
A	what is its molecular weight in grams?
В	What is its empirical (simple) formula?
С	How many <u>moles</u> are there in 2.65 g of hydrazine?
D	How many <u>grams</u> of hydrazine are there in 1.2×10^{27} molecules of hydrazine?
E	How many <u>hydrogen atoms</u> are there in 1.769 mol of hydrazine?
F	How many grams of hydrogen can be obtained from 100.0 g of hydrazine?
G	How many <u>neutrons</u> are there in one molecule of hydrazine?
Н	What is the molar concentration of 0.02 g of N_2H_4 in 439mL of solution?

2. (4 points)

(a) Consider the electronic transition from the principal quantum number n = 4 to n = 1 in the hydrogen atom. Is energy emitted or absorbed for this transition? What is the wavelength of the associated photon?

(b) List the various subshells, and the number of orbitals in each subshell, for the shell with a principal quantum number of 3.

Shell	Subshells	Number of orbitals for each subshell
- 2		
n = 3		

3. (4 points) In an experiment 489.6 g of BF_3 were reacted with 160.2 g of H_2O , according to the following reaction:

$$2BF_3(aq) + 3H_2O(g) \implies B_2O_3(s) + 6HF(g)$$

a- What is the theoretical yield of B_2O_3 in grams?

Theoretical yield =

b- How many moles of the excess reactant remain?

moles of excess reactant =

c- If the reaction yield is 73%, what is the actual yield of B_2O_3 in grams?

Actual yield $(B_2O_3) =$

4. (4 points)

a) Diagram the resonance forms of *SCS*; assigning the formal charge on each atom, the C atom is the central atom.

b) Calculate the de Broglie wavelength of an electron traveling at 15% of the speed of light.

Consider hydrazine, N₂H₄ (Show your work)

- a. What is its molecular weight in grams? N_2H_4 Molecular weight = 14×2 + 4×1=32g/mol
- b. What is its empirical (simple) formula?
- c. How many <u>moles</u> are there in 2.65 g of hydrazine⁹

 $\# moles = \frac{2.65g}{32g/mol} = 0.083mol$

d. How many grams of hydrazine are there in 1.2 ×10²⁷ molecules of hydrazine?

> 1 mol N₂H₄ = 6.02×10²³ molecules X mol = 1.2 ×10²⁷ molecules $x = \frac{1.2 \times 10^{27}}{6.02 \times 10^{23}} = 2.0 \times 10^{3} mol$

 $2.0 \times 10^3 \times 32 = 6.4 \times 10^4 \text{ g}$

How many hydrogen atoms are there in 1.2 ×10²⁷ molecules of hydrazine?

There are 4 H atoms in one N₂H₄ molecule

 1.2×10^{27} molecules : $1.2 \times 10^{27} \times 4 =$

4.8 ×10²⁷ H atoms

f. How many <u>grams</u> of hydrogen can be obtained from 100.0 g of hydrazine ?

$$\%H = \frac{4 \times 1}{32} \times 100 = 12.5\%$$

In 100 g of hydrazine:

weight of hydrogen = $\frac{12.5}{100} \times 100 = 12.5g$

g. How many <u>neutrons</u> are there in one molecule of hydrazine ؟

> ${}^{1}_{1}H$: zero neutrons ${}^{14}_{7}N$: 14 - 7 = 7 neutrons

In one molecule: 2×7 = 14 neutrons

h. What is the molar concentration of 0.02 g of N_2H_4 in 439mL of solution?

$$M = \frac{n}{V}$$

$$n = \frac{0.02g}{32g/mol} = 6.25 \times 10^{-4} \, mol$$

 $M = \frac{6.25 \times 10^{-4} \,mol}{0.439L} = 1.42 \times 10^{-3} M$

(2.a)Consider the electronic transition From the principal quantum number n = 4 to n =1 in the hydrogen atom.

Is energy emitted or absorbed for this transition? What is the wavelength of the associated photon?

$$v = \frac{c}{\lambda} \Longrightarrow \lambda = \frac{c}{v} =$$

$$\frac{3.00 \times 10^8 \, m \, / \, s}{3.083 \times 10^{15} \, s^{-1}} = 9.7 \times 10^{-8} \, m$$

=9.7×10⁻⁸ m×10⁹nm/m = 97 nm

(2.b)List the various subshells, and the number of orbitals in each subshell, for the shell with a principal quantum number of 3.

Shell(n)	Subshell	Notation	Orbitals (<i>m_l</i>)	#orbitals
3	0	3 s	0	1
	1	3р	-1, 0, +1	3
	2	3d	-2, -1, 0, +1, +2	5

3.	In an experiment 489.6 g of BF ₃ were reacted with 160.2 g of H ₂ O, according to the following reaction: $2BF_3(aq)+3H_2O(g) \Rightarrow B_2O_3(s)+6HF(g)$
a.	What is the theoretical yield of B_2O_3 in grams? #moles of $BF_3 = \frac{489.6g}{68g / mol} = 7.2mol$
	#moles of $H_2O = \frac{160.2g}{18g / mol} = 8.9mol$
	determine the limiting reagent
	for BF₃: $\frac{7.2}{2} = 3.6$
	for H_2O : $\frac{8.9}{3} = 2.97$ (smaller ratio)
	H ₂ O is the limiting reagent

3 mol $H_2O = 1 \mod B_2O_3$ 8.9 mol $H_2O = x \mod B_2O_3$

 $x = \frac{8.9 mol H_2 O \times 1 mol B_2 O_3}{3 mol H_2 O}$ $= 2.97 mol B_2 O_3$

2.97 mol $B_2O_3 =$ 2.97 mol × 70 g / mol = 208 g

b. How many moles of the excess reactant remain?

2 mol $BF_3 = 3 \text{ mol } H_2O$ x mol $BF_3 = 8.9 \text{ mol } H_2O$

 $x = \frac{8.9mol H_2O \times 2mol BF_3}{3mol H_2O}$ $= 5.93mol BF_3$

7.2 - 5.93 = 1.3 mol

c. If the reaction yield is 73%, what is the actual yield of B_2O_3 in grams % yield = $\frac{Actual yield}{theoretica 1 yield} \times 100$ $\frac{73}{100} = \frac{Actual yield}{208} = 151.8 \text{ g}$ Calculate the de Broglie's wavelength of an electron traveling at 15% of the speed of light.

$$\lambda = \frac{h}{mv} =$$

$6.626 \times 10^{-34} J.s$

 $9.11 \times 10^{-31} kg \times 0.15 \times 3.00 \times 10^8 m/s$