Chemical Equilibrium

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& 2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \\
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

\mathcal{F} : the equation can be read in either direction

$$
A_{2}(g)+B_{2}(g) \rightleftharpoons 2 A B(g)
$$

Time

$A_{2}(g)+B_{2}(g) \rightleftharpoons 2 A B(g)$

K_{f} : forward reaction rate constant
$K_{r}:$ reverse reaction rate constant
rate $_{f}=k_{f}\left[A_{2}\right]\left[B_{2}\right]$
rate $_{r}=k_{r}[A B]^{2}$
At equilibrium \quad rate $_{f}=$ rate $_{r}$

$$
k_{f}\left[A_{2}\right]\left[B_{2}\right]=k_{r}[A B]^{2}
$$

$$
\begin{aligned}
& \frac{k_{f}}{k_{r}}=\frac{[A B]^{2}}{\left[A_{2}\right]\left[B_{2}\right]} \\
& K_{c}=\frac{[A B]^{2}}{\left[A_{2}\right]\left[B_{2}\right]}
\end{aligned}
$$

K_{c} : equilibrium constant

Heterogeneous equilibria

Equilibria involving substances in more than one phase are called heterogeneous equilibria The concentration of a pure solid or liquid are constant when temperature and pressure are constant

$$
\begin{gathered}
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]
\end{gathered}
$$

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Equilibrium concentrations:

$$
\begin{aligned}
& {\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=4.27 \times 10^{-2} \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathrm{NO}_{2}\right]=1.41 \times 10^{-2} \mathrm{~mol} / \mathrm{L}} \\
& \mathrm{~K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left(1.41 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)^{2}}{\left(4.27 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)} \\
& K_{c}=4.66 \times 10^{-3} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

For a general reaction

$$
\begin{gathered}
a A(g)+b B(g) \rightleftharpoons c C(g)+d D(g) \\
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{gathered}
$$

Equilibrium constant can be expressed in pressures

$$
\begin{gathered}
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
K_{P}=P_{\mathrm{CO}_{2}}
\end{gathered}
$$

For a general reaction

$$
\begin{gathered}
a A(g)+b B(g) \rightleftharpoons c C(g)+d D(g) \\
K_{P}=\frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}}
\end{gathered}
$$

The relation between K_{c} and K_{P} :
Assuming ideal gas behavior

$$
\mathbf{P V}=\mathbf{n R T} \Longrightarrow \mathbf{P}=(\mathbf{n} / \mathbf{V}) \mathbf{R T}
$$

$$
\mathbf{n} / \mathbf{V}=\text { concentration }
$$

$$
\begin{gathered}
P_{A}=[A] R T \\
P_{A}^{a}=[A]^{a}(R T)^{a} \\
P_{B}^{b}=[B]^{b}(R T)^{b} \\
P_{C}^{c}=[C]^{c}(R T)^{c} \\
P_{D}^{d}=[D]^{d}(R T)^{d}
\end{gathered}
$$

$$
\begin{aligned}
K_{P} & =\frac{[C]^{c}(R T)^{c}[D]^{d}(R T)^{d}}{[A]^{a}(R T)^{a}[B]^{b}(R T)^{b}} \\
K_{P} & =\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}(R T)^{c+d-a-b} \\
K_{P} & =K_{c}(R T)^{c+d-a-b} \\
K_{P} & =K_{c}(R T)^{(c+d)-(a+b)} \\
K_{P} & =K_{c}(R T)^{\Delta n}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta n=(c+d)-(a+b) \\
& \mathbf{c}+\mathbf{d}=\text { total moles of the products } \\
& \mathbf{a}+\mathbf{b}=\text { total moles of the reactants }
\end{aligned}
$$

$$
\begin{gathered}
P C l_{5}(g) \rightleftharpoons \text { PCl }_{3}(g)+C l_{2}(g) \\
K_{P}=K_{c}(R T)^{\Delta n} \\
\Delta n=1+1-1=1 \\
K_{P}=K_{c}(R T)
\end{gathered}
$$

$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$

$$
\begin{aligned}
\Delta n & =1-(1+1)=-1 \\
K_{P} & =K_{c}(R T)^{-1} \\
K_{P} & =\frac{K_{c}}{R T}
\end{aligned}
$$

$$
\begin{gathered}
H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g) \\
\Delta n=2-(1+1)=0 \\
K_{P}=K_{c}(R T)^{0} \\
K_{P}=K_{c}
\end{gathered}
$$

$$
\begin{gathered}
a A(g)+b B(g) \rightleftharpoons c C(g)+d D(g) \\
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{gathered}
$$

At the beginning of the reaction A and B are present and the forward reaction occurs, the direction is towards the products
$Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
Using initial concentratins

1. $\mathrm{Q}<\mathrm{K}_{\mathrm{C}}$

Reaction direction: left \rightarrow right
(forward reaction)
A and B decrease until equilibrium is reached
2. $\mathbf{Q}>\mathrm{K}_{\mathrm{C}}$

Reaction direction: right \rightarrow left
(reverse reaction)

C and D decrease until equilibrium is reached

What is the direction of the the following reaction?

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Given $\mathrm{K}_{\mathrm{c}}=\mathbf{0 . 3 6}$ and the initial concentrations
$\mathrm{N}_{2} \mathrm{O}_{4}=0.20 \mathrm{~mol} / 4 \mathrm{~L}$
$\mathrm{NO}_{2}=0.20 \mathrm{~mol} / 4 \mathrm{~L}$
In units of $\mathrm{mol} / \mathrm{L}$
$\mathrm{N}_{2} \mathrm{O}_{4}=0.20 / 4=0.05 \mathrm{~mol} / \mathrm{L}$
$\mathrm{NO}_{2}=0.20 / 4=0.05 \mathrm{~mol} / \mathrm{L}$

$$
Q=\frac{0.05^{2}}{0.05^{2}}=0.05
$$

$$
Q\left\langle K_{c}\right.
$$

Reaction direction: left \rightarrow right

A system in equilibrium reacts to a stress in a way that counteracts the stress and establishes a new equilibrium state

Stress:

$>$ Change in concentration
$>$ Change in pressure
$>$ Change in temperature
$>$ Addition of a catalyst

$$
H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g)
$$

If hydrogen is added the equilibrium will shift to decrease the effect of the concentration change

Reaction direction: left \rightarrow right

If HI is added the equilibrium will shift to decrease the effect of the concentration change

Reaction direction: right \rightarrow left

Removal of one of the substances from an equilibrium system will also cause the position of the equilibrium to shift

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

Pressure increase:
Reactants: 4 moles
Products: 2moles

The equilibrium shifts to the right
(direction: towards side with smaller \# moles

If $\Delta \mathrm{n}=\mathbf{0}$
no effect of pressure change on the equilibrium
$N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \Delta \mathrm{H}=-92.4 \mathrm{~kJ}$
Since ΔH is negative, the reaction to the right evolves heat

$$
N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+92.4 \mathrm{~kJ}
$$

The forward reaction is exothermic
The reverse reaction is endothermic
If heat is added, the position of the equilibrium shifts to the left

$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $\Delta H=+41 k J$
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+41 \mathrm{~kJ} \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
If heat is added the position of the equilibrium shifts to the right

The numerical value of the equilibrium constant changes when the temperature is changed

Increasing the temperature always favors the endothermic change

Decreasing the temperature always favors the exothermic change

Addition of a catalyst has no effect on the position of the equilibrium

A catalyst would affect both, forward and reverse, reactions equally

A catalyst will cause a system to attain equilibrium more rapidly than it otherwise would

Adding chemical equations

$$
\begin{gathered}
\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}_{1}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{\frac{1}{2}}} \\
\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}_{2}}=\frac{[\mathrm{NO}]\left[\mathrm{O}_{2}\right]^{\frac{1}{2}}}{\left[\mathrm{NO}_{2}\right]} \\
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{SO}_{3}\right]\right.}{\left[\mathrm{NO}_{2}\right]\left[\mathrm{SO}_{2}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}_{1}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{\frac{1}{2}}} \quad \mathrm{~K}_{\mathrm{c}_{2}}=\frac{\left[\mathrm{NO} \llbracket \mathrm{O}_{2}\right]^{\frac{1}{2}}}{\left[\mathrm{NO}_{2}\right]} \\
& \mathrm{K}_{\mathrm{C}_{1}} \times \mathrm{K}_{\mathrm{C}_{2}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]_{2}^{\frac{1}{2}}} \times \frac{\left[\mathrm{NO} \llbracket \mathrm{O}_{2}\right]^{\frac{1}{2}}}{\left[\mathrm{NO}_{2}\right]} \\
& =\frac{[\mathrm{NO}]\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{NO}_{2}\right]\left[\mathrm{SO}_{2}\right]}=K_{c}
\end{aligned}
$$

Example

$$
\begin{aligned}
S(s)+O_{2}(g) & \rightleftharpoons S O_{2}(g) \quad \mathbf{K}_{1}=5.0 \times 10^{6} \\
K_{1} & =\frac{\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

$\mathrm{SO}_{2}(g) \rightleftharpoons S(s)+O_{2}(g) \quad \mathbf{K}_{2}=$?

$$
K_{2}=\frac{\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{2}\right]}
$$

$$
K_{2}=\frac{1}{K_{1}}=\frac{1}{5.0 \times 10^{6}}
$$

Example

$$
\begin{aligned}
& H_{2}(g)+S(s) \quad \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0} \times \mathbf{1 0}_{2}^{-3} \mathrm{~S}(\mathrm{~g}) \quad \underset{ }{-} \\
& S(s)+O_{2}(g) \rightleftharpoons S O_{2}(g) \quad \mathrm{K}_{2}=5.0 \times 10^{6}
\end{aligned}
$$

Determine $\mathbf{K}_{\mathbf{c}}$ for the following reaction

$$
\mathrm{H}_{2}(g)+\mathrm{SO}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(g)
$$

$$
\begin{gathered}
\text { (} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
\mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
K_{c}=K_{1} \times \frac{1}{K_{2}}=1.0 \times 10^{-3} \times \frac{1}{5.0 \times 10^{6}}=2.0 \times 10^{-10}
\end{gathered}
$$

Example

$$
C l_{2}(g)+P C l_{3}(g) \rightleftharpoons P C l_{5}(g) \quad K_{1}=8.0 \times 10^{16}
$$

$$
K_{1}=\frac{\left[P C l_{5}\right]}{\left[P C l_{3}\right]\left[C l_{2}\right]}
$$

$P C l_{5}(g) \rightleftharpoons C l_{2}(g)+P C l_{3}(g) \quad K_{2}=?$

$$
K_{2}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{1}{K_{1}}=\frac{1}{8.0 \times 10^{16}}
$$

$$
\begin{aligned}
& \frac{1}{2} \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{PCl}_{3}(\mathrm{~g}) \mathrm{K}_{3}=? \\
& K_{3}=\frac{\left[\mathrm{PCl}_{5}{ }^{\frac{1}{2}}\right.}{\left[\mathrm{PCl}_{3}\right]^{\frac{1}{2}}\left[\mathrm{Cl}_{2}\right]^{\frac{1}{2}}}=\left(\frac{1}{K_{1}}\right)^{\frac{1}{2}}=\left(\frac{1}{8.0 \times 10^{16}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{gathered}
K_{1}=\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]} \\
2 \mathrm{PCl}_{3}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})=2 \mathrm{PCl}_{5}(\mathrm{~g}) \quad K_{4}=? \\
K_{4}=\frac{\left[\mathrm{PCl}_{5}\right]^{2}}{\left[\mathrm{PCl}_{3}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}}=K_{1}^{2}=\left(8.0 \times 10^{16}\right)^{2}
\end{gathered}
$$ 1 L vessel and allowed to reach equilibrium at $500^{\circ} \mathrm{C}$. if $K_{c}=4.06$, determine the equilibrium concentrations.

$$
\begin{array}{ccc}
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) & \rightleftharpoons & \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \\
\mathbf{0 . 1 0 0 M} & \mathbf{0 . 1 0 0 M} & \mathbf{0}
\end{array}
$$

Change

- X
- X
$+\mathbf{X}$
$+\mathbf{X}$

首
0.100M-X 0.100M-X

X
X

$$
\begin{gathered}
K_{c}=\frac{\left.\left[\mathrm{CO}_{2}\right] \mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{(X)(X)}{(0.100-X)(0.100-X)}=4.06 \\
\frac{(X)(X)}{(0.100-X)(0.100-X)}=4.06 \\
\frac{(X)^{2}}{(0.100-X)^{2}}=4.06 \\
\left(\frac{(X)}{(0.100-X)}\right)^{2}=4.06
\end{gathered}
$$

$\frac{(X)}{(0.100-X)}=\sqrt{4.06} \longrightarrow X=0.0668$

$$
[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]=0.100-0.0668=0.033 \mathrm{M}
$$

$$
\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]=\mathrm{X}=0.0668 \mathrm{M}
$$

Concentrations	0.20 mol of H_{2} was mixed with 0.20 mol of $\mathrm{I}_{2}(\mathrm{~g})$ in a 2.0 L vessel and allowed to reach equilibrium. At equilibrium $\left[I_{2}\right]=0.020 \mathrm{M}$. What is the value of K_{c} ?		
	$H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g)$		
Initial	$\frac{0.20}{2.0} M$	$\frac{0.20}{2.0} M$	0
Change	- X	- X	+ 2 X
首	$\frac{0.20}{2.0}-X=0.020$	$\frac{0.20}{2.0}-X=0.020$	2X

$$
\begin{aligned}
\frac{0.20}{2.0}-X & =0.020 \longrightarrow X=0.080 \\
K_{c} & =\frac{[H I]^{2}}{\left[H_{2}\right]\left[I_{2}\right]} \\
K_{c} & =\frac{[2 \times 0.080]^{2}}{[0.020][0.020]}=64
\end{aligned}
$$

Example

$$
\begin{gathered}
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(2 \mathrm{X})^{2}}{(0.150-X)}=4.50 \\
4 X^{2}+4.50 X-0.675=0
\end{gathered}
$$

Second order equation $a X^{2}+b X+c=0$

$$
\begin{aligned}
& X=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& X=\frac{-4.5 \pm \sqrt{(4.5)^{2}-4(4)(-0.675)}}{2(4)}
\end{aligned}
$$

$$
X=0.134 \quad \text { or } X=-1.26
$$

Choose the positive value of X

$$
\left[\mathrm{NO}_{2}\right]=2(0.134)=0.268 \mathrm{M}
$$

$$
\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.150-0.134=0.016 \mathrm{M}
$$

