
Chemical Equilibrium

$$N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g)$$
$$2NH_{3}(g) \rightarrow N_{2}(g) + 3H_{2}(g)$$
$$N_{2}(g) + 3H_{2}(g) \Longrightarrow 2NH_{3}(g)$$

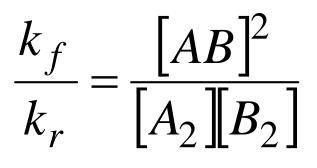
: the equation can be read in either direction

 $A_2(g) + B_2(g) \Longrightarrow 2AB(g)$

Time

$$A_2(g) + B_2(g) \implies 2AB(g)$$

K_f : forward reaction rate constant


 K_r : reverse reaction rate constant

$$rate_{f} = k_{f} [A_{2}] [B_{2}]$$
$$rate_{r} = k_{r} [AB]^{2}$$

At equilibrium $rate_f = rate_r$

 $k_f [A_2] [B_2] = k_r [AB]^2$

$$K_c = \frac{\left[AB\right]^2}{\left[A_2\right]\left[B_2\right]}$$

K_c : equilibrium constant

Heterogeneous equilibria

Equilibria involving substances in more than one phase are called heterogeneous equilibria The concentration of a pure solid or liquid are constant when temperature and pressure are constant

$$CaCO_{3}(s) \rightleftharpoons CaO(s) + CO_{2}(g)$$
$$K_{c} = [CO_{2}]$$

 $N_2O_4(g) \Longrightarrow 2NO_2(g)$

Equilibrium concentrations:

$$[N_{2}O_{4}] = 4.27 \times 10^{-2} \, mol \, / L$$

$$[NO_{2}] = 1.41 \times 10^{-2} \, mol \, / L$$

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} = \frac{(1.41 \times 10^{-2} \, mol \, / L)^{2}}{(4.27 \times 10^{-2} \, mol \, / L)}$$

$$K_{c} = 4.66 \times 10^{-3} \, mol \, / L$$

For a general reaction

$$aA(g) + bB(g) \Longrightarrow cC(g) + dD(g)$$
$$K_c = \frac{\left[C\right]^c \left[D\right]^d}{\left[A\right]^a \left[B\right]^b}$$

Equilibrium constant can be expressed in pressures

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

$$K_P = P_{CO_2}$$

For a general reaction

$$aA(g) + bB(g) \rightleftharpoons cC(g) + dD(g)$$
$$K_P = \frac{P_C^c P_D^d}{P_A^a P_B^b}$$

The relation between K_c and K_P :

Assuming ideal gas behavior

 $PV = nRT \implies P = (n/V) RT$

n/V = concentration

$$P_{A} = [A]RT$$

$$P_{A}^{a} = [A]^{a} (RT)^{a}$$

$$P_{B}^{b} = [B]^{b} (RT)^{b}$$

$$P_{C}^{c} = [C]^{c} (RT)^{c}$$

$$P_{D}^{d} = [D]^{d} (RT)^{d}$$

$$K_{P} = \frac{\left[C\right]^{c} (RT)^{c} \left[D\right]^{d} (RT)^{d}}{\left[A\right]^{a} (RT)^{a} \left[B\right]^{b} (RT)^{b}}$$

$$K_{P} = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}} (RT)^{c+d-a-b}$$

$$K_{P} = K_{c} (RT)^{c+d-a-b}$$

$$K_{P} = K_{c} (RT)^{(c+d)-(a+b)}$$

$$K_{P} = K_{c} (RT)^{\Delta n}$$

$$\Delta n = (c+d) - (a+b)$$

c + **d** = total moles of the products

a + **b** = total moles of the reactants

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

$$K_P = K_c (RT)^{\Delta n}$$

$$\Delta n = 1 + 1 - 1 = 1$$

$$K_P = K_c(RT)$$

$$CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$$

$$\Delta n = 1 - (1 + 1) = -1$$

$$K_P = K_c (RT)^{-1}$$

$$K_P = \frac{K_c}{RT}$$

$$H_2(g) + I_2(g) \implies 2HI(g)$$

$$\Delta n = 2 - (1 + 1) = 0$$

$$K_P = K_c (RT)^0$$

$$K_P = K_c$$

Direction of the reaction $aA(g) + bB(g) \iff cC(g) + dD(g)$ $K_{c} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$

At the beginning of the reaction A and B are present and the forward reaction occurs, the direction is towards the products

$$Q = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$
 Using initial concentrations

1. $Q < K_C$

Reaction direction: left \rightarrow right (forward reaction)

A and B decrease until equilibrium is reached

2. $Q > K_C$

Reaction direction: right \rightarrow left (reverse reaction)

C and **D** decrease until equilibrium is reached

What is the direction of the the following reaction?

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

Given $K_c = 0.36$ and the initial concentrations $N_2O_4 = 0.20 \text{ mol}/4L$ $NO_2 = 0.20 \text{ mol}/4L$ In units of mol/L

 $N_2O_4 = 0.20/4 = 0.05 \text{ mol/L}$ $NO_2 = 0.20/4 = 0.05 \text{ mol/L}$

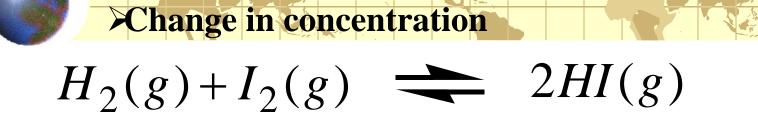
$$Q = \frac{0.05^2}{0.05^2} = 0.05$$

 $Q\langle K_c$

Reaction direction: left \rightarrow right

Le Chatelier's principle

A system in equilibrium reacts to a stress in a way that counteracts the stress and establishes a new equilibrium state


Stress:

Change in concentration

Change in pressure

Change in temperature

Addition of a catalyst

If hydrogen is added the equilibrium will shift to decrease the effect of the concentration change

Reaction direction: left \rightarrow right

If HI is added the equilibrium will shift to decrease the effect of the concentration change

Reaction direction: right \rightarrow left

Removal of one of the substances from an equilibrium system will also cause the position of the equilibrium to shift

$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

Pressure increase: Reactants: 4 moles Products: 2moles

The equilibrium shifts to the right

(direction: towards side with smaller # moles

If $\Delta n = 0$ no effect of pressure change on the equilibrium

 $N_2(g) + 3H_2(g) \implies 2NH_3(g) \Delta H = -92.4 \text{kJ}$

Since ΔH is negative, the reaction to the right evolves heat

$$N_2(g) + 3H_2(g) \implies 2NH_3(g) + 92.4$$
kJ

The forward reaction is *exothermic*

The reverse reaction is *endothermic*

If heat is added, the position of the equilibrium shifts to the left

$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ $\Delta \mathbf{H} = +41\mathbf{kJ}$

$CO_2(g) + H_2(g) + 41kJ \Longrightarrow CO(g) + H_2O(g)$

If heat is added the position of the equilibrium shifts to the right

The numerical value of the equilibrium constant changes when the temperature is changed

Increasing the temperature always favors the endothermic change

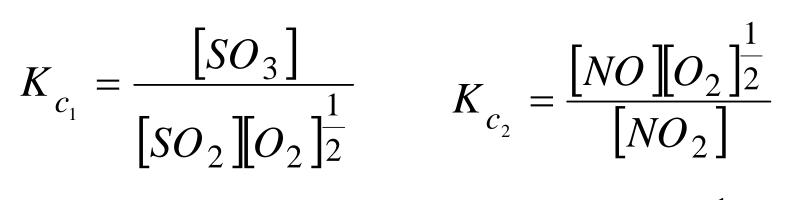
Decreasing the temperature always favors the exothermic change

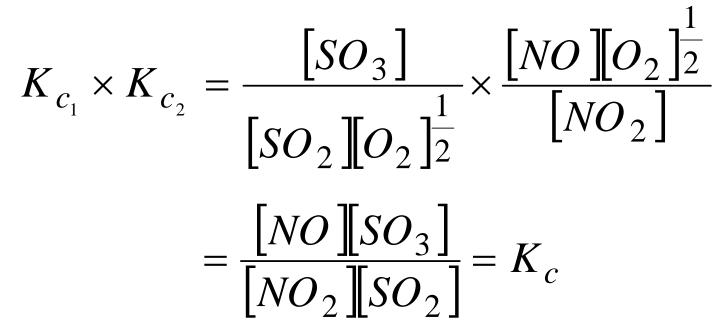
Addition of a catalyst

Addition of a catalyst has no effect on the position of the equilibrium

A catalyst would affect both, forward and reverse, reactions equally

A catalyst will cause a system to attain equilibrium more rapidly than it otherwise would


Adding chemical equations


$$SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g) \quad K_{c_1} = \frac{[SO_3]}{[SO_2][O_2]^{\frac{1}{2}}}$$

$$NO_2(g) \Longrightarrow NO(g) + \frac{1}{2}O_2(g)$$
 $K_{c_2} = \frac{[NO][O_2]_2^1}{[NO_2]}$

$$SO_{2}(g) + NO_{2}(g) \Longrightarrow SO_{3}(g) + NO(g)$$
$$K_{c} = \frac{\left[NO\left[SO_{3}\right]\right]}{\left[NO_{2}\left[SO_{2}\right]\right]}$$

Example

$$S(s) + O_2(g) \implies SO_2(g) \qquad \mathbf{K}_1 = 5.0 \times 10^6$$
$$K_1 = \frac{\left[SO_2\right]}{\left[O_2\right]}$$

$$SO_2(g) \implies S(s) + O_2(g) \qquad K_2 = ?$$

 $K_2 = \frac{[O_2]}{[SO_2]}$ $K_2 = \frac{1}{K_1} = \frac{1}{5.0 \times 10^6}$

Example

$$H_2(g) + S(s) \implies H_2S(g) \qquad K_1 = 1.0 \times 10^{-3}$$

$$S(s) + O_2(g) \implies SO_2(g) \qquad K_2 = 5.0 \times 10^6$$

Determine K_c for the following reaction

$$H_2(g) + SO_2(g) \implies H_2S(g) + O_2(g)$$

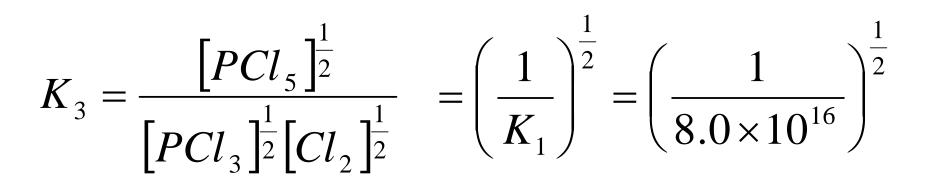
$$H_2(g) + S(s) \implies H_2S(g)$$

$$SO_2(g) \implies S(s) + O_2(g)$$

$$H_2(g) + SO_2(g) \implies H_2S(g) + O_2(g)$$

$$K_c = K_1 \times \frac{1}{K_2} = 1.0 \times 10^{-3} \times \frac{1}{5.0 \times 10^6} = 2.0 \times 10^{-10}$$

 $Cl_2(g) + PCl_3(g) \Longrightarrow PCl_5(g)$ $K_1 = 8.0 \times 10^{16}$


$$K_1 = \frac{\begin{bmatrix} PCl_5 \end{bmatrix}}{\begin{bmatrix} PCl_3 \end{bmatrix} \begin{bmatrix} Cl_2 \end{bmatrix}}$$

 $PCl_5(g) \Longrightarrow Cl_2(g) + PCl_3(g) \quad K_2 = ?$

$$K_{2} = \frac{\left[PCl_{3}\right]\left[Cl_{2}\right]}{\left[PCl_{5}\right]} = \frac{1}{K_{1}} = \frac{1}{8.0 \times 10^{16}}$$

$$\frac{1}{2}PCl_5(g) \Longrightarrow \frac{1}{2}Cl_2(g) + \frac{1}{2}PCl_3(g) \quad K_3 = ?$$

$$K_1 = \frac{\begin{bmatrix} PCl_5 \end{bmatrix}}{\begin{bmatrix} PCl_3 \end{bmatrix} \begin{bmatrix} Cl_2 \end{bmatrix}}$$

$2PCl_3(g) + 2Cl_2(g) \implies 2PCl_5(g) \quad K_4 = ?$

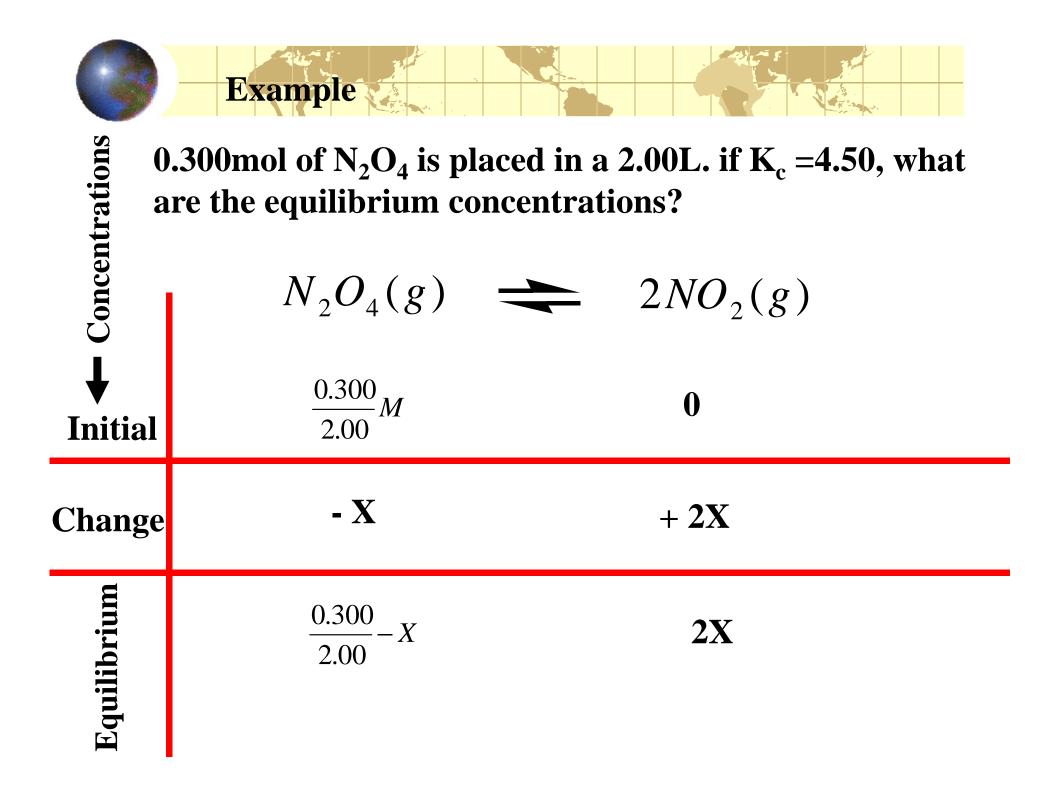
$$K_4 = \frac{\left[PCl_5\right]^2}{\left[PCl_3\right]^2 \left[Cl_2\right]^2} = K_1^2 = (8.0 \times 10^{16})^2$$

	Example	e					
90.100mol of CO was mixed with 0.100mol of H ₂ O(g) in a 1L vessel and allowed to reach equilibrium at 500°C. if K _c = 4.06, determine the equilibrium concentrations. $CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$							
- Con	CO(g) -	$+H_2O(g)$		$CO_2(g)$	$+H_{2}(g)$		
↓ Initial	0.100M	0.100M		0	0		
Change	- X	- X		+ X	$+ \mathbf{X}$		
Equilibrium	0.100M-X	0.100M-X		X	X		

$$K_{c} = \frac{\left[CO_{2}\right]\left[H_{2}\right]}{\left[CO\right]\left[H_{2}O\right]} = \frac{(X)(X)}{(0.100 - X)(0.100 - X)} = 4.06$$
$$\frac{(X)(X)}{(0.100 - X)(0.100 - X)} = 4.06$$
$$\frac{(X)^{2}}{(0.100 - X)^{2}} = 4.06$$
$$\left(\frac{(X)}{(0.100 - X)}\right)^{2} = 4.06$$

$$\frac{(X)}{(0.100 - X)} = \sqrt{4.06} \longrightarrow X = 0.0668$$

 $[CO] = [H_2O] = 0.100 - 0.0668 = 0.033M$


$$[CO_2] = [H_2] = X = 0.0668 M$$

Example IDENTIFY OF TWO DENTIFY OF TWO DENTIFY						
- Con	$H_{2}(g) +$	$I_2(g)$	2HI(g)			
↓ Initial	$\frac{0.20}{2.0}M$	$\frac{0.20}{2.0}M$	0			
Change	- X	- X	+ 2X			
Equilibrium	$\frac{0.20}{2.0} - X = 0.020$	$\frac{0.20}{2.0} - X = 0.020$	2X			

$$\frac{0.20}{2.0} - X = 0.020 \longrightarrow X = 0.080$$
$$K_c = \frac{[HI]^2}{[H_2][I_2]}$$

$$K_c = \frac{\left[2 \times 0.080\right]^2}{\left[0.020\right]\left[0.020\right]} = 64$$

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} = \frac{(2X)^{2}}{(0.150 - X)} = 4.50$$

$$4X^{2} + 4.50X - 0.675 = 0$$
Second order equation $aX^{2} + bX + c = 0$

$$X = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$X = \frac{-4.5 \pm \sqrt{(4.5)^{2} - 4(4)(-0.675)}}{2(4)}$$

X = 0.134 or X = -1.26

Choose the positive value of X

$$[NO_2] = 2(0.134) = 0.268M$$

 $[N_2O_4] = 0.150 - 0.134 = 0.016M$