

Gases

'Gases consist of widely separated molecules in rapid motion
$>$ Any two or more gases can be mixed to form a uniform mixture
$>$ Gases can readily be compressed
$>$ A gas expands to fill any container into which it is introduced

Substances that exist as gases

Noble gases (group 8 elements)
Hydrogen as \mathbf{H}_{2}

Nitrogen as \mathbf{N}_{2}

Oxygen as \mathbf{O}_{2}

Fluorine as \mathbf{F}_{2}

Chlorine as $\mathbf{C l}_{2}$

Pressure

Pressure : force per unit area

$$
\frac{\text { force }}{\text { area }}=\frac{\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}}{\mathrm{~m}^{2}}=\mathrm{kg} \cdot \mathrm{~m}^{-1} \mathrm{~s}^{-2}=\operatorname{pascal}(p a)
$$

Chemists usually measure gas pressures by relating them to the pressure of the atmosphere

Barometer: used to measures the atmospheric pressure

The Barometer

The average pressure at sea level supports a column of mercury to a height of 760 mm

1 atmosphere $=760$ mm Hg
$1 \mathrm{~mm} \mathrm{Hg}=1$ torr

Boyle's law

The relation between pressure, P and volume, V

Robert Boyle 1662

At constant temperature, the volume of a sample of a gas varies inversely with the pressure

Boyle's law

No pressure applied
Pressure applied

Boyle's law

$$
V \alpha \frac{1}{P}
$$

The proportionality can be changed into an equality

$$
V=\frac{k}{P} \quad \text { or } \quad P V=k
$$

This means that $P V$ is always constant at constant T

$$
P_{1} V_{1}=P_{2} V_{2}=P_{3} V_{3}=\ldots \ldots .=k
$$

Boyle's law

Example

A gas sample has a volume of 360 mL at 0.750 atm . What would be the volume if the pressure was increased to 1 atm. At constant temperature?

$$
\begin{array}{ll}
\mathbf{P}_{1}=0.750 & \mathbf{P}_{2}=1 \mathrm{~atm} \\
\mathrm{~atm} & \mathbf{V}_{2}=? \\
\mathbf{V}_{1}=360 \mathrm{~mL} &
\end{array}
$$

$$
P_{1} V_{1}=P_{2} V_{2} \Rightarrow V_{2}=\frac{P_{1} V_{1}}{P_{2}}
$$

$$
V_{2}=\frac{0.750 \mathrm{~atm} \times 360 \mathrm{~mL}}{1 \mathrm{~atm}}=270 \mathrm{~mL}
$$

Charles law

The relation between temperature, T and volume, V Jacques Charles, 1787

A gas expands when it is heated at constant pressure
The volume increase is not directly proportional to the Celsius temperature.

In an absolute temperature scale, with temperatures measured in Kelvin,
Volume is directly proportional to temperature
Kelvin, $\mathbf{T}={ }^{\circ} \mathrm{C}+273$

Charles law

Charles' law

The proportionality can be changed into an equality

$$
\begin{gathered}
V=k T \quad \text { or } \quad \frac{V}{T}=k \\
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=\frac{V_{3}}{T_{3}}=\ldots .=k
\end{gathered}
$$

Charles law

Charles law

Example:

A sample of gas has a volume of
2.58 L at $15{ }^{\circ} \mathrm{C}$. What volume will the sample occupy at $38^{\circ} \mathrm{C}$ when the pressure is held constant?

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \Rightarrow V_{2}=\frac{T_{2} V_{1}}{T_{1}} \\
& V_{1}=2.58 L \\
& T_{1}=(15+273) K \quad V_{2}=? \\
& T_{2}=(38+273) K
\end{aligned}
$$

$$
V_{2}=\frac{(38+273) 2.58}{(15+273)}=2.79 L
$$

Avogadro's Law

The volume of a gas, at fixed temperature and pressure, varies directly with the number of moles of the gas considered

$$
V \alpha \quad n
$$

The proportionality can be changed into an equality

$$
\begin{aligned}
& V=k n \quad \text { or } \quad \frac{V}{n}=k \\
& \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}=\frac{V_{3}}{n_{3}}=\ldots=k
\end{aligned}
$$

Avogadro's Law

Example:
0.50 mol of O_{2} occupying 12.2 L was transformed to O_{3} what volume will O_{3} occupy if pressure and temperature remain constant?

First write down a balanced equation

$$
\begin{aligned}
& 3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g}) \\
& \mathbf{3} \mathrm{mol} \mathrm{O}_{2}=2 \mathrm{~mol} \mathrm{O}_{3} \\
& \mathbf{0 . 5 0 \mathrm { mol } \mathrm { O } _ { 2 } = x \text { mol O}}{ }_{3} \\
& x=\frac{0.50 \times 2}{3}=0.33 \mathrm{~mol}
\end{aligned}
$$

Avogadro's Law

$$
\begin{aligned}
& \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \Rightarrow V_{2}=\frac{n_{2} V_{1}}{n_{1}} \\
& V_{1}=12.2 \mathrm{~L} \quad V_{2}=? \\
& n_{1}=0.5 \mathrm{~mol} \quad n_{2}=0.33 \mathrm{~mol} \\
& V_{2}=\frac{0.33 \times 12.2}{0.50}=8.1 \mathrm{~L}
\end{aligned}
$$

General gas law

We can combine Boyle's law with Charles law to get the relation between pressure, volume and temperature for a certain amount of a gas

$$
\begin{array}{cc}
V \alpha \frac{1}{P} & V \alpha T \\
& V \alpha \frac{T}{P}
\end{array}
$$

The proportionality can be changed into an equality

$$
\begin{aligned}
V & =k \frac{T}{P} \Rightarrow \frac{P V}{T}=k \\
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}}=\frac{P_{3} V_{3}}{T_{3}}=k
\end{aligned}
$$

Example:
A gas sample occupies a volume of 500 mL at $7.0^{\circ} \mathrm{C}$ \& 0.20 atm . Determine the pressure when the volume is 1.0 L at $107^{\circ} \mathrm{C}$.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$$
\frac{0.20 \times 500}{(7+273)}=\frac{P_{2} \times 1000}{(107+273)}=0.14 \mathrm{~atm}
$$

The ideal gas law

To get the relation between n, T, P, and V combine

$$
\begin{gathered}
V \alpha \frac{1}{P} \quad \& \quad V \alpha T \quad \& \quad V \alpha \quad n \\
V \alpha \frac{n T}{P} \Rightarrow V=\text { constatnt } \quad \times \frac{n T}{P} \\
V=\frac{n R T}{P} \quad \text { Rearrange: } \\
P V=n R T \quad \quad \text { The ideal gas law }
\end{gathered}
$$

Under normal conditions of temperature and pressure, most gases conform well with the behavior described by the equation.

Deviations occur under extreme conditions (low temperature and high pressure)

By convention:
Standard temperature and pressure STP are defined as $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and exactly 1 atm pressure

The volume of 1 mol of an ideal gas, from experimental measures is 22.4 L

This data can be used to determine the value of \mathbf{R}

$$
P V=n R T \rightarrow R=P V / n T
$$

$P=1 \mathrm{~atm} \quad \mathrm{n}=1 \mathrm{~mol} \quad \mathrm{~T}=273 \mathrm{~K} \quad \mathrm{~V}=22.4 \mathrm{~L}$

$$
R=\frac{1 \mathrm{~atm} \times 22.4 \mathrm{~L}}{1 \mathrm{~mol} \times 273 \mathrm{~K}}=0.082{\mathrm{~L} . \mathrm{atm} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}}^{-1}
$$

$$
R=8.314 \quad \text { J. } K^{-1} . \mathrm{mof}^{1}
$$

$$
P V=n R T
$$

n : number of moles = weight/molecular weight (g / M.wt)

$$
P V=\frac{g}{M . w t} R T
$$

Example:

A gas sample occupies a volume of 462 mL at $35{ }^{\circ} \mathrm{C}$ \& 1.15atm. Determine the volume at S.T.P.

$$
\begin{array}{ll}
P_{1}=1.15 \mathrm{~atm} & \mathbf{P}_{2}=1 \mathrm{~atm} \\
\mathrm{~V}_{1}=462 \mathrm{~mL} & \mathbf{V}_{2}=? \\
\mathrm{~T}_{1}=(35+273) \mathrm{K} & \mathrm{~T}_{2}=273 \mathrm{~K}
\end{array}
$$

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{1.15 \mathrm{~atm} \times 462 \mathrm{~mL}}{308 \mathrm{~K}}=\frac{1 \mathrm{~atm} \times V_{2}}{273 \mathrm{~K}} \\
V_{2}=471 \mathrm{~mL}
\end{gathered}
$$

Example:
0.250 mol of nitrogen gas occupies a volume of 10.0 L at $100^{\circ} \mathrm{C}$. what is the pressure of nitrogen?

$$
\begin{array}{|lll|}
\hline P=? & V=10.0 \mathrm{~L} & \mathbf{n}=0.250 \mathrm{~mol} \\
\hline
\end{array}
$$

$$
P V=n R T
$$

$P=\frac{0.250 \mathrm{~mol} \times 0.082 \mathrm{~L} . \mathrm{atm} . \mathrm{mol}^{-1} \mathrm{~K}^{-1} \times 373 \mathrm{~K}}{10.0 \mathrm{~L}}$
$P=0.766 \mathrm{~atm}$

Example
What is the volume of 10.0 g of CO_{2} gas at $27^{\circ} \mathrm{C} \& 2.00 \mathrm{~atm}$.

$$
P V=\frac{g}{M . w t} R T \quad \text { M. Wt }\left(\mathrm{CO}_{2}\right)=44.0 \mathrm{~g} / \mathrm{mol}
$$

$2.00 \mathrm{~atm} \times V=$
$\frac{10.0 \mathrm{~g}}{44.0 \mathrm{~g} / \mathrm{mol}} 0.082{\mathrm{~L} . \mathrm{atm} . \mathrm{mol}^{-1} \mathrm{~K}^{-1} 300 \mathrm{~K}}^{2}$

$$
V=2.80 L
$$

Example

What is the density of NH_{3} gas at $100^{\circ} \mathrm{C} \& 1.15 \mathrm{~atm}$?

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{g}{L}
$$

To get the density set the volume $=1.00 \mathrm{~L}$ and solve for g
M.wt for $\mathbf{N H}_{3}=17.0 \mathrm{~g} / \mathrm{mol}$
$1.15 \mathrm{~atm} \times 1.00 \mathrm{~L}=$
$\frac{\mathrm{g}}{17.0 \mathrm{~g} \mathrm{/} \mathrm{~mol}} \times 0.082 \frac{\mathrm{L.atm}}{\mathrm{~mol} . \mathrm{K}} \times 373 \mathrm{~K}$
$\mathrm{g}=0.638 \quad$ The density is $0.638 \mathrm{~g} / \mathrm{L}$

Dalton's law of partial pressures

Total pressure of a mixture of gases, that do not react, is equal to the sum of the partial pressures of all the gases present.

$$
\mathbf{P}_{\text {total }}=\mathbf{p}_{\mathrm{A}}+\mathbf{P}_{\mathrm{B}}+\mathbf{P}_{\mathrm{C}}+\ldots \ldots
$$

$P_{A}=0.4 \mathrm{~atm}$

$$
P_{B}=0.5 \mathrm{~atm}
$$

$$
\begin{aligned}
& P_{\text {total }}= \\
& \mathbf{P}_{\mathrm{A}}+\mathbf{P}_{\mathrm{B}}=0.9 \mathrm{~atm}
\end{aligned}
$$

If $\mathbf{n}_{\mathrm{A}} \mathbf{m o l}$ of gas A is mixed with $\mathbf{n}_{\mathrm{B}} \mathbf{m o l}$ of gas B

$$
\mathbf{n}_{\mathbf{T}}=\mathbf{n}_{\mathbf{A}}+\mathbf{n}_{\mathbf{B}}
$$

$\frac{n_{A}}{n}=X_{A}$: mole fraction of A
$n_{\text {total }}$
$\frac{n_{B}}{n}=X_{B}$: mole fraction of B
$n_{\text {total }}$

For each gas apply the ideal gas law

$$
\begin{aligned}
& P_{A}=\frac{n_{A} R T}{V} \\
& P_{\text {total }}=\frac{n_{A} R T}{V}+\frac{n_{B} R T}{V}=\left(n_{A}+n_{B}\right) \frac{R T}{V} \\
& \frac{P_{A}}{P_{\text {total }}}=\frac{\frac{n_{A} R T}{V}}{\frac{n_{\text {total }} R T}{V}}=\frac{n_{A}}{n_{\text {total }}}=X_{A}
\end{aligned}
$$

$$
\frac{P_{A}}{P_{\text {total }}}=X_{A} \rightarrow P_{A}=X_{A} P_{\text {total }}
$$

For P_{B}

$$
P_{B}=X_{B} \times P_{\text {total }}
$$

Example:

2.43 mol of N_{2} gas was mixed with 3.07 mol of O_{2} gas in a 5.00 L container at 298 K .

1. Determine the partial pressure of each gas
2. Determine the total pressure

$$
\begin{aligned}
& P_{N_{2}}=\frac{n_{N_{2}} R T}{V}=\frac{2.43 \times 0.082 \times 298}{5.00}=11.9 \mathrm{~atm} \\
& P_{O_{2}}=\frac{n_{O_{2}} R T}{V}=\frac{3.07 \times 0.082 \times 298}{5.00}=15.0 \mathrm{~atm} \\
& P_{\text {total }}=P_{N_{2}}+P_{O_{2}}=11.9+15.0=26.9 \mathrm{~atm}
\end{aligned}
$$

Example:

The total pressure of a mixture of 40.0 g of O_{2} and 40.0 g of $\mathrm{H}_{\mathbf{2}}$ is $\mathbf{0 . 9 0 0} \mathbf{~ a t m}$. What is the partial pressure of O_{2} gas?

$$
\begin{aligned}
P_{O_{2}}=X_{O_{2}} P_{\text {total }}=\frac{n_{O_{2}}}{n_{O_{2}}+n_{H_{2}}} & =\frac{\frac{40.0}{32}}{\frac{40.0}{32}+\frac{40.0}{4}}=0.112 \\
P_{O_{2}}=0.112 \times 0.900 & =0.101 \mathrm{~atm}
\end{aligned}
$$

Real gases

Deviations from ideal behavior occur under

1. High pressures
2. Low temperatures

Two reasons for the deviation:

1. Molecular volume
2. Intermolecular forces of attraction
van der Waals equation

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

Solved problems

A 370 mL of O_{2} gas is collected over water at $23{ }^{\circ} \mathrm{C}$ and 0.992 atm . what volume would this sample occupy dry and at STP?

(water vapor pressure at 23 ${ }^{\circ} \mathrm{C}=0.0277 \mathrm{~atm}$)

$P_{\text {total }}=0.992 \mathrm{~atm}$
$P_{\text {total }}=P_{\mathrm{O}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}}$
$0.992=P_{\mathrm{O}_{2}}+0.0277 \rightarrow P_{\mathrm{O}_{2}}=0.964 \mathrm{~atm}$

$P_{1}=0.964 \mathrm{~atm}$
$\mathrm{V}_{1}=370 \mathrm{~mL}$
$\mathrm{T}_{1}=(23+273) \mathrm{K}$

$$
\begin{aligned}
& \mathbf{P}_{2}=1.000 \mathrm{~atm} \\
& \mathbf{V}_{2}=? \\
& \mathbf{T}_{2}=273 \mathrm{~K}
\end{aligned}
$$

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$\frac{0.964 \mathrm{~atm} \times 370 \mathrm{~mL}}{296 \mathrm{~K}}=\frac{1 \mathrm{~atm} \times V_{2}}{273 \mathrm{~K}}$

$V_{2}=329 m L$

Stoichiometric problems

What is the volume of CO_{2} produced from decomposition of 152 g of CaCO_{3} at 373 K and 1.00 atm ?

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CaO}(\mathrm{~s})
$$

\# of moles of $\mathrm{CaCO}_{3}=\frac{152 \mathrm{~g}}{100.0 \mathrm{~g} / \mathrm{mol}}=1.52 \mathrm{~mol}$
$1 \mathrm{~mol} \mathrm{CaCO}_{3}=1 \mathrm{~mol} \mathrm{CO} 2$
$1.52 \mathrm{~mol} \mathrm{CaCO}_{3}=1.52 \mathrm{~mol} \mathrm{CO}_{2}$

$$
P V=n R T
$$

$$
V=\frac{1.52 \times 0.0820 \times 373}{1.00}=46.5 \mathrm{~L}
$$

Example

$\mathrm{O}_{2}(\mathrm{~g})$ reacts with $\mathrm{C}_{2} \mathrm{H}_{6}$ according to the equation

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

1. What volume of O_{2} is needed to react with 15.0 L of $\mathrm{C}_{2} \mathrm{H}_{6}$?
2. What volume of CO_{2} is produced from the reaction of 15 L of $\mathrm{C}_{2} \mathrm{H}_{6}$?

$$
\begin{aligned}
& 2 \mathrm{~L} \text { of } \mathrm{C}_{2} \mathbf{H}_{6}==7 \mathrm{~L} \mathrm{O} \mathbf{O}_{2} \\
& 15 \mathrm{~L} \text { of } \mathrm{C}_{2} \mathbf{H}_{6}==X \mathrm{~L} \mathrm{O}
\end{aligned} \quad X=\frac{15.0 \times 7}{2}=52.5 L
$$

$2 \mathrm{~L} \mathrm{of}_{2} \mathrm{H}_{6}==4 \mathrm{LCO}_{2}$

$15 \mathrm{~L} \mathrm{of}_{\mathrm{C}}^{2} \mathrm{H}_{6}==\mathrm{X} \mathrm{LCO} \mathrm{Cl}_{2}$

$$
X=\frac{15.0 \times 4}{2}=30 L
$$

