

Chemical equations

Chemical equations are representations of reactions.

Instead of: 2moles of hydrogen react with one mole of oxygen to produce 2moles of water,

We write:

$$2H_2 + O_2 \rightarrow 2H_2O$$

Reactants Products

In chemical equations:

Number of atoms of each element on the left = Number of the atoms on the right side (conservation of mass law)

Examples:

$$Fe + H_2O \rightarrow Fe_3O_4 + H_2$$
 unbalanced

$$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$
 balanced

$$KClO_3 \rightarrow KCl + O_2$$
 unbalanced

$$2KClO_3 \rightarrow 2KCl + 3O_2$$
 balanced

The equation:

$$2H_2 + O_2 \rightarrow 2H_2O$$

can be read as follows:

2 molecules of H_2 react with 1 molecule of O_2 to produce 2 molecules of H_2O

2 mol H₂ react with 1mol O₂ to produce 2mol H₂O

2(2)g H₂ react with 1(32)g O₂ to produce 2(18)g H₂O

The coefficients of the chemical equation give the ratios in which the substances react.

ratios can use to solve stoichiometric problems

we can answer questions of the type:

How much of a reactant we need to produce certain amount of a product?

How much product will be produced from certain amount of a reactant?

Determine the number of O_2 moles required to react with 4mol of C_2H_6

$$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$$

the problem:

$$X \text{ mol } O_2 = 4.0 \text{ mol } C_2H_6$$

the stoichiometric ratio: $7 \text{mol } O_2 = 2 \text{mol } C_2 H_6$

$$X \text{ mol } O_2 = \frac{(7 \text{mol } O_2) (4.0 \text{ mol } C_2 H_6)}{(2 \text{mol } C_2 H_6)} = 14 \text{ mol } O_2$$

The amount of CO in a sample of a gas can be determined by the reaction

$$I_2O_5 + 5CO \rightarrow I_2 + 5CO_2$$

If a gas sample liberates 0.192g of I_2 , how many grams of CO were present in the sample?

$$n_{I_2} = \frac{0.192 \, g}{254 \, g \, / \, mol} = 7.56 \times 10^{-4} \, mol$$

from the problem: Xmol CO = 7.56×10^{-4} mol I_2

from the equation: 5 mol CO = 1 mol I_2

$$X \ mol \ CO = \frac{(5mol \ CO)(7.56 \times 10^{-4} \ mol \ I_2)}{(1mol \ I_2)} =$$

 $3.78 \times 10^{-3} \ mol \ CO$

 $3.78 \times 10^{-3} \text{ mol CO} \times 28.01 \text{g/mol CO} = 0.106 \text{g CO}$

Limiting reactant & yield of reactions

For the reaction

$$S + 3F_2 \rightarrow SF_6$$

Suppose we have 20moles of F₂ and 4 moles of S

which reactant will determine the quantity of the product?

from the problem: $4\text{mol } S = \text{Xmol } F_2$

from the equation: $1 \text{mol } S = 3 \text{mol } F_2$

#moles of F_2 needed to react with 4moles of S =

$$\frac{4mol\ S\times 3mol\ F_2}{1mol\ S}=12\ mol\ F_2$$
 but we have 20 moles of F_2

let's use the 20 moles of F₂

from the problem: $Xmol S = 20mol F_2$

from the equation: $1 \text{mol } S = 3 \text{mol } F_2$

#moles of S needed to react with 20moles of F_2 = $\frac{1 mol~S \times 20 mol~F_2}{3 mol~F_2} = 6.7~mol~S$

but we have only 4 moles of S

which reactant will be consumed first?

Sulfur

Limiting reactant: the reactant that is consumed first.

An easy way to determine the limiting reactant: For all reactants determine the ratio

amount of the reactant from the problem amount of the reactant from the equation

The smallest number belongs to the limiting reactant.

In our example:

For S:
$$\frac{\text{amount of S from the problem}}{\text{amount of S from the equation}} = \frac{4 \text{ mol S}}{1 \text{ mol S}} = 4$$

For
$$F_2$$
: $\frac{\text{amount of } F_2 \text{ from the problem}}{\text{amount of } F_2 \text{ from the equation}} = \frac{20 \text{ mol } F_2}{3 \text{ mol } F_2} = 6.7$

S has the smaller ratio,

∴ S is the limiting reactant

Percent yield of a reaction

Theoretical yield from a reaction is the yield calculated by assuming that the reaction goes to completion.

In practice: Actual yield is usually less than theoretically expected.

Actual yield

% yield =
$$\frac{\text{Actual yield}}{\text{theoretical yield}} \times 100$$

Example:

How many moles of H_2 can theoretically be produced from 4.00mol of Fe and 5.00mol of H_2 O?

$$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

a. determine the limiting reagent

for Fe:
$$\frac{4.00}{3} = 1.33$$

for
$$H_2O$$
: $\frac{5.00}{4} = 1.25$ (smaller ratio)

the limiting reagent H₂O

b. theoretical yield

4
$$mol H_2O = 4mol H_2$$

$$5.00$$
mol $H_2O = X$ mol H_2

theoretical yield of
$$H_2 = 5.00 \text{ mol } H_2$$

4.80g of N_2F_4 were obtained from the reaction of 4.00g of NH₃ and 14.0g of F₂. What is the %yield of N_2F_4 ?

$$2NH_3 + 5F_2 \rightarrow N_2F_4 + 6HF$$

4.00g NH₃ =
$$\frac{4.00g}{17.0g/mol}$$
 = 0.235mol

14.0g
$$\mathbf{F_2} = \frac{14.0 \, g}{38.00 \, g \, / \, mol} = 0.368 \, mol$$

determine the limiting reagent:

for NH₃:
$$\frac{0.235}{2} = 0.118$$

for
$$F_2$$
: $\frac{0.368}{5} = 0.0736$ (smaller ratio)

F₂ is the limiting reagent

from the problem: 0.368mol F2 = X mol N_2F_4

from the equation: 5 $\text{mol } F_2 = 1 \text{ mol } N_2F_4$

$$\mathbf{X} = \frac{0.368 \, mol \, F_2 \times 1 mol \, N_2 F_4}{5 \, mol \, F_2} = 0.0736 \, mol \, N_2 F_4$$

M.wt
$$N_2F_4 = 104g/mol$$

$$0.0736$$
mol $N_2F_4 = 0.736$ mol $\times 104$ g/mol = 7.65 g

% yield =
$$\frac{\text{Actual yield}}{\text{theoretical yield}} \times 100$$

$$\% \text{ yield} = \frac{4.80g}{7.65g} \times 100 = 62.7\%$$

47.7g of CuO was left to react with excess amount of \mathbf{H}_2 according to the equation

$$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(I)$$

How many grams of Cu were produced if the percent yield of Cu was 55%?

Excess H₂ means that CuO is the limiting reagent

moles of CuO =
$$\frac{47.7g}{79.5g / mol}$$
 = 0.600 mol

from the equation: $1 \mod CuO = 1 \mod Cu$

from the problem: 0.600mol CuO = Xmol Cu

Theoretical yield=0.600 moles of Cu

From the relation:
$$\%$$
 yield = $\frac{Actual\ yield}{theoretical\ yield} \times 100$

$$\frac{55}{100} = \frac{\text{Actual yield}}{0.600 \text{mol}} \Rightarrow \text{Actual yield} = 0.33 \text{mol of Cu}$$

 $0.33 \text{mol Cu} = 0.33 \text{mol} \times 63.5 \text{g/mol} = 21 \text{ g}$

How many grams of CO_2 can be prepared from the reaction of 8.0g CH_4 and 48g O_2 ?

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

8.0g
$$\mathbf{CH_4} = \frac{8.0g}{16.04g/mol} = 0.50mol$$

48g
$$O_2 = \frac{48g}{32g/mol} = 1.5mol$$

Determine the limiting reagent

For CH₄:
$$\frac{0.5mol}{1mol} = 0.5$$
 (smaller ratio)

For
$$O_2$$
: $\frac{1.5mol}{2mol} = 0.75$

CH₄ is the limiting reagent

from the equation: 1 $mol CH_4 = 1 mol CO_2$

from the problem: $0.5 \text{mol CH}_4 = X \text{ mol CO}_2$

$$X = 0.5 \text{mol CO}_2 = 0.5 \text{mol} \times 44 \text{g/mol} = 22 \text{g}$$