

Chemical equations

Chemical equations are representations of reactions.
Instead of: 2moles of hydrogen react with one mole of oxygen to produce 2 moles of water,

We write:

$$
\underbrace{2 \mathrm{H}_{2}+\mathrm{O}_{2}} \underbrace{2 \mathrm{H}_{2} \mathrm{O}}
$$

Reactants Products

In chemical equations:
Number of atoms of each element on the left $=$ Number of the atoms on the right side (conservation of mass law)

Examples:

$$
\begin{array}{ll}
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2} & \text { unbalanced } \\
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} & \text { balanced } \\
\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\mathrm{O}_{2} & \text { unbalanced } \\
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} & \text { balanced }
\end{array}
$$

The equation:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

can be read as follows:
2 molecules of H_{2} react with 1 molecule of O_{2} to produce 2 molecules of $\mathbf{H}_{2} \mathbf{O}$
$2 \mathbf{m o l ~ H}_{2}$ react with $\mathbf{1 m o l} \mathrm{O}_{2}$ to produce $\mathbf{2 m o l} \mathrm{H}_{2} \mathrm{O}$

2(2) $\mathrm{g} \mathrm{H}_{2}$ react with $1(32) \mathrm{g} \mathrm{O}_{2}$ to produce 2(18) $\mathrm{g} \mathrm{H}_{2} \mathrm{O}$

The coefficients of the chemical equation give the ratios in which the substances react.

ratios can use to solve stoichiometric problems
we can answer questions of the type:

How much of a reactant we need to produce certain amount of a product?

How much product will be produced from certain amount of a reactant?

Example
Determine the number of \mathbf{O}_{2} moles required to react with 4 mol of $\mathrm{C}_{2} \mathrm{H}_{6}$

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

the problem:

$$
X \mathrm{~mol} \mathrm{O}=4.0 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}
$$

the stoichiometric ratio: $\mathbf{7 m o l} \mathrm{O}_{2}=\mathbf{2} \mathrm{molC}_{2} \mathbf{H}_{6}$

$$
\mathrm{X} \mathrm{molO}_{2}=\frac{\left(7 \mathrm{molO}_{2}\right)\left(4.0 \mathrm{molC}_{2} \mathrm{H}_{6}\right)}{\left(2 \mathrm{molC}_{2} \mathrm{H}_{6}\right)}=14 \mathrm{molO}_{2}
$$

Example:
The amount of CO in a sample of a gas can be determined by the reaction

$$
\mathrm{I}_{2} \mathrm{O}_{5}+5 \mathrm{CO} \rightarrow \mathrm{I}_{2}+5 \mathrm{CO}_{2}
$$

If a gas sample liberates 0.192 g of \mathbf{I}_{2}, how many grams of CO were present in the sample?

$$
n_{I_{2}}=\frac{0.192 \mathrm{~g}}{254 \mathrm{~g} / \mathrm{mol}}=7.56 \times 10^{-4} \mathrm{~mol}
$$

from the problem: $\mathrm{Xmol} C O=\mathbf{7 . 5 6} \times \mathbf{1 0}^{-4} \mathrm{~mol}_{\mathbf{2}}$
from the equation: $\mathbf{5} \mathbf{~ m o l ~ C O = 1 ~ m o l ~ I ~} \mathbf{I}_{2}$

$$
\begin{aligned}
& X \mathrm{~mol} \mathrm{CO}=\frac{(5 \mathrm{~mol} \mathrm{CO})\left(7.56 \times 10^{-4} \mathrm{~mol} \mathrm{I}_{2}\right)}{\left(1 \mathrm{~mol} \mathrm{I}_{2}\right)}= \\
& 3.78 \times 10^{-3} \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

$3.78 \times 10^{-3} \mathrm{~mol} \mathrm{CO} \times 28.01 \mathrm{~g} / \mathrm{mol} \mathrm{CO}=0.106 \mathrm{~g} \mathrm{CO}$

Limiting reactant \&yield of reactions

For the reaction

$$
\mathrm{S}+3 \mathrm{~F}_{2} \rightarrow \mathrm{SF}_{6}
$$

Suppose we have 20moles of F_{2} and 4 moles of S
which reactant will determine the quantity of the product?
from the problem: 4mol S = Xmol F $\mathbf{2}_{2}$
from the equation: 1mol $\mathrm{S}=3 \mathrm{~mol}_{\mathbf{2}}$
\#moles of F_{2} needed to react with 4moles of $\mathrm{S}=$

$$
\frac{4 \mathrm{~mol} \mathrm{~S} \times 3 \mathrm{~mol} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~S}}=12 \mathrm{~mol} \mathrm{~F}_{2}
$$

but we have $\mathbf{2 0}$ moles of \mathbf{F}_{2}
let's use the $\mathbf{2 0}$ moles of $\mathbf{F}_{\mathbf{2}}$
from the problem: Xmol S = 20mol \mathbf{F}_{2}
from the equation: $1 \mathrm{~mol} \mathrm{~S}=\mathbf{3 m o l} \mathrm{F}_{2}$
\#moles of S needed to react with 20moles of $\mathbf{F}_{\mathbf{2}}=$

$$
\frac{1 \mathrm{~mol} \mathrm{~S} \times 20 \mathrm{~mol} \mathrm{~F}_{2}}{3 \mathrm{~mol} \mathrm{~F}}=6.7 \mathrm{~mol} \mathrm{~S}
$$

but we have only 4 moles of S
which reactant will be consumed first?

Sulfur

Limiting reactant: the reactant that is consumed first.
An easy way to determine the limiting reactant: For all reactants determine the ratio

amount of the reactant	from the problem
amount of the reactant from the equation	

The smallest number belongs to the limiting reactant.
In our example:
For S: $\frac{\text { amount of } S \text { from the problem }}{\text { amount of } S \text { from the equation }}=\frac{4 \mathrm{~mol} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=4$
For $\mathrm{F}_{2}: \frac{\text { amount of } \mathrm{F}_{2} \text { from the problem }}{\text { amount of } \mathrm{F}_{2} \text { from the equation }}=\frac{20 \mathrm{~mol} \mathrm{~F}_{2}}{3 \mathrm{~mol} \mathrm{~F}_{2}}=6.7$
S has the smaller ratio,
$\therefore \mathrm{S}$ is the limiting reactant

Percent yield of a reaction

Theoretical yield from a reaction is the yield calculated by assuming that the reaction goes to completion.
In practice: Actual yield is usually less than theoretically expected.

$$
\% \text { yield }=\frac{\text { Actual yield }}{\text { theoretical yield }} \times 100
$$

Example:
How many moles of \mathbf{H}_{2} can theoretically be produced from 4.00 mol of Fe and 5.00 mol of $\mathrm{H}_{2} \mathrm{O}$?

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

a. determine the limiting reagent
for Fe: $\quad \frac{4.00}{3}=1.33$
for $\mathrm{H}_{2} \mathrm{O}: \frac{5.00}{4}=1.25 \quad$ (smaller ratio)
the limiting reagent $\mathrm{H}_{2} \mathrm{O}$
b. theoretical yield
$4 \mathbf{m o l ~ H} \mathbf{2}=4 \mathrm{~mol} \mathrm{H}_{2}$
5.00 $\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=\mathrm{Xmol} \mathrm{H}_{2}$
theoretical yield of $\mathbf{H}_{2}=5.00 \mathrm{~mol} \mathrm{H}_{2}$

Example

4.80 g of $\mathrm{N}_{2} \mathrm{~F}_{4}$ were obtained from the reaction of 4.00 g of NH_{3} and 14.0 g of F_{2}. What is the \%yield of $\mathrm{N}_{2} \mathrm{~F}_{4}$?
$2 \mathrm{NH}_{3}+5 \mathrm{~F}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{~F}_{4}+6 \mathrm{HF}$
$4.00 \mathrm{~g} \mathrm{NH}_{3}=\frac{4.00 \mathrm{~g}}{17.0 \mathrm{~g} / \mathrm{mol}}=0.235 \mathrm{~mol}$
$14.0 \mathrm{~g} \mathrm{~F}_{2}=\frac{14.0 \mathrm{~g}}{38.00 \mathrm{~g} / \mathrm{mol}}=0.368 \mathrm{~mol}$
determine the limiting reagent:

$$
\begin{aligned}
& \text { for } \mathrm{NH}_{3}: \frac{0.235}{2}=0.118 \\
& \text { for } \mathrm{F}_{2}: \frac{0.368}{5}=0.0736 \quad \text { (smaller ratio) }
\end{aligned}
$$

F_{2} is the limiting reagent
from the problem: 0.368 mol F2 $=\mathrm{X} \mathrm{mol} \mathrm{N}_{2} \mathrm{~F}_{\mathbf{4}}$
from the equation: $\mathbf{5} \quad \mathrm{mol} \mathrm{F}_{2}=\mathbf{1} \mathrm{mol} \mathrm{N}_{\mathbf{2}} \mathrm{F}_{4}$

$$
\mathbf{X}=\frac{0.368 \mathrm{~mol} \mathrm{~F}_{2} \times 1 \mathrm{~mol}_{2} \mathrm{~F}_{4}}{5 \mathrm{~mol} \mathrm{~F}_{2}}=0.0736 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}
$$

M.wt $\mathrm{N}_{2} \mathrm{~F}_{4}=\mathbf{1 0 4 g} / \mathrm{mol}$
$0.0736 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}=0.736 \mathrm{~mol} \times 104 \mathrm{~g} / \mathrm{mol}=7.65 \mathrm{~g}$

$$
\% \text { yield }=\frac{\text { Actual yield }}{\text { theoretica l yield }} \times 100
$$

$$
\% \text { yield }=\frac{4.80 \mathrm{~g}}{7.65 \mathrm{~g}} \times 100=62.7 \%
$$

Example

47.7 g of CuO was left to react with excess amount of H_{2} according to the equation

$$
\mathrm{CuO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

How many grams of Cu were produced if the percent yield of Cu was 55% ?
Excess H_{2} means that $\mathbf{C u O}$ is the limiting reagent
\# moles of $\mathbf{C u O}=\frac{47.7 \mathrm{~g}}{79.5 \mathrm{~g} / \mathrm{mol}}=0.600 \mathrm{~mol}$
from the equation: $\mathbf{1} \mathbf{m o l ~ C u O}=\mathbf{1 m o l ~ C u}$
from the problem: $0.600 \mathrm{~mol} \mathbf{C u O}=\mathbf{X m o l ~ C u}$

Theoretical yield= $\mathbf{0 . 6 0 0}$ moles of $\mathbf{C u}$
From the relation: \% yield $=\frac{\text { Actual yield }}{\text { theoretical yield }} \times 100$
$\frac{55}{100}=\frac{\text { Actual yield }}{0.600 \mathrm{~mol}} \Rightarrow$ Actual yield $=0.33 \mathrm{~mol}$ of Cu
$0.33 \mathrm{~mol} \mathrm{Cu}=0.33 \mathrm{~mol} \times 63.5 \mathrm{~g} / \mathrm{mol}=21 \mathrm{~g}$

Example

How many grams of CO_{2} can be prepared from the reaction of $8.0 \mathrm{~g} \mathrm{CH}_{4}$ and $48 \mathrm{~g} \mathrm{O}_{2}$? $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$8.0 \mathrm{~g} \mathrm{CH}_{4}=\frac{8.0 \mathrm{~g}}{16.04 \mathrm{~g} / \mathrm{mol}}=0.50 \mathrm{~mol}$
$48 \mathrm{~g} \mathrm{O}_{2}=\frac{48 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=1.5 \mathrm{~mol}$

Determine the limiting reagent
For $\mathbf{C H}_{4}: \frac{0.5 \mathrm{~mol}}{1 \mathrm{~mol}}=0.5$ (smaller ratio)
For $\mathbf{O}_{2}: \frac{1.5 \mathrm{~mol}}{2 \mathrm{~mol}}=0.75$
CH_{4} is the limiting reagent
from the equation: $1 \mathrm{~mol} \mathrm{CH}_{\mathbf{4}}=\mathbf{1} \mathrm{mol} \mathrm{CO}_{2}$
from the problem: $0.5 \mathrm{~mol} \mathrm{CH}_{4}=\mathrm{X} \mathrm{mol} \mathrm{CO}$
$\mathrm{X}=0.5 \mathrm{~mol} \mathrm{CO} 2=0.5 \mathrm{~mol} \times 44 \mathrm{~g} / \mathrm{mol}=22 \mathrm{~g}$

