Chem. 101

General Chemistry
Text Book:
Chemistry
R. Chang

$\mathbf{9 5 - 1 0 0}$	A $^{+}$	$\mathbf{9 0 - 9 4}$	A
$\mathbf{8 5 - 8 9}$	B $^{+}$	$\mathbf{8 0 - 8 4}$	B
$75-79$	C $^{+}$	$70-74$	C
$65-69$	D $^{+}$	$60-64$	D
<60	F		

Exam I:
30

Exam II: 30
Final exam:
40

Total:
100

Generally, read any scale to $1 / 10$ of the smallest division.

The Metric System
 The metric system of measurements is used in all scientific studies.

The general conference of weights and measures
The International System of units (SI) is founded on seven base units and two supplementary units

Measurement		Unit	Symbol
1	length	meter	m
2	mass	kilogram	kg
3	time	second	s
4	amount of substance	mole	mol
5	temperature	kelvin	K
6	electric current	ampere	A
7	luminous intensity	candela	cd

- \sim_{0}^{0}	1	plane angle	radian	rad
¢	2	solid angle	steradian	Sr

Derived units (SI):

Obtained from the base units by algebraic combination.

Volume: length \times length \times length $=(\text { length })^{3}=\mathrm{m}^{3}$
Other common unit for volume: the liter (L)

$$
1 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}
$$

Other common unit for density: $\frac{g}{c m^{3}}$
Speed: $\frac{\text { length }}{\text { time }}=\frac{m}{s} \quad\left(\mathrm{~ms}^{-1}\right)$

Acceleration $\frac{\text { speed }}{\text { time }}=\frac{m}{s^{2}} \quad\left(\mathrm{~ms}^{-2}\right)$
Force: mass \times acceleration

$$
=\mathbf{k g} \quad \times \mathbf{m ~ s}^{-2}=\text { Newton }(\mathbf{N})
$$

Energy: force \times length

$$
=\mathbf{k g ~ m ~ s}{ }^{-2} \times \mathbf{m}=
$$

$\mathbf{k g} \mathbf{m}^{\mathbf{2}} \mathbf{s}^{-2}=$ Joule (J)

Pressure:

$\frac{\text { force }}{\text { area }}=\frac{\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}}{\mathrm{~m}^{2}}=\mathrm{kg} \cdot \mathrm{m}^{-1} \mathrm{~s}^{-2}=\operatorname{pascal}(p a)$

1 atmosphere (atm) = 101325 ра

Prefixesfitsed to modify unit terms in the metric system

Prefix	Abbreviation	Factor
Tera-	$\mathrm{T}-$	10^{12}
Giga-	$\mathrm{G}-$	10^{9}
Mega-	$\mathrm{M}-$	10^{6}
kilo-	$\mathrm{k}-$	10^{3}
hecto-	$\mathrm{h}-$	10^{2}
deka-	da-	10
deci-	$\mathrm{d}-$	10^{-1}
centi-	$\mathrm{c}-$	10^{-2}
milli-	$\mathrm{m}-$	10^{-3}
micro-	$\mathrm{\mu}-$	10^{-6}
nano-	$\mathrm{n}-$	10^{-9}
pico-	$\mathrm{p}-$	10^{-12}

A common unit of length in chemistry:

the Angstrom: $\AA=\mathbf{1 0}^{-10} \mathbf{m}$

Unit Conversion:

Example

if the radius of Cl atom is 0.99 A. Give the radius in meters (m).

$$
1 \mathrm{~m}=10^{10} \AA \rightarrow \frac{1 \mathrm{~m}}{10^{10} \AA}=1 \quad \text { (the conversion factor) }
$$

$$
0.99 \AA \times \frac{1 \mathrm{~m}}{10^{10} \AA}=9.9 \times 10^{-11} \mathrm{~m}
$$

Example

Convert $5 \mathrm{~m}^{3}$ into cm^{3}

$$
\begin{aligned}
& \mathbf{1 m}=\mathbf{1 0 0} \mathbf{~ c m} \\
& \mathbf{1 \mathbf { m } ^ { 3 }}=\mathbf{1 . 0} \times \mathbf{1 0}^{6} \mathbf{c m}^{3} \\
& \frac{1.0 \times 10^{6} \mathrm{~cm}^{3}}{1 \mathrm{~m}^{3}} \times 5 \mathrm{~m}^{3}=5 \times 10^{6} \mathrm{~cm}^{3}
\end{aligned}
$$

Example

if a density of substance was $11 \mathrm{~g} / \mathrm{cm}^{3}$. what is the density in SI units?

$$
\begin{aligned}
& 1 \mathbf{g}=10^{-3} \mathbf{k g} \\
& \left(\frac{11 \mathrm{~cm}}{\mathrm{~cm}^{3}}=\mathbf{1 0}^{-6} \mathrm{~m}^{\mathbf{3}}\right. \\
& \left(\frac{1 \mathrm{~cm}^{3}}{10^{-6} \mathrm{~m}}\right)\left(\frac{10^{-3} \mathrm{~kg}}{1 \mathrm{~g}}\right)=11000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

