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Stochastic models with memory effects

Honaida Malaikah

King Abdulaziz university, Saudi Arabia

Abstract. We aim in this work to derive non-Markovian stochastic models. We generalize the discrete random walk by
using the method of conditional arrival probability and different types of time distribution in order to get the memory effect.
Similarly, we apply this method in case of continuous time random walk with different time distributions and different jump
distributions to get stochastic models with memory effect. Also, we may know the memory effect from the statistical properties

of the model, especially the second moment.

Keywords: transition probability, arrival probability,short memory, long memory, waiting time.

INTRODUCTION

Many phenomena such as volatility in finance, the tem-
perature of the weather have long memory effect. These
phenomena need a long memory model to describe them.
In order to get stochastic models with memory, we use
the discrete random walk (the case when we have dis-
crete states and continuous time) or the continuous ran-
dom walk CTRW (the case when we have continuous
states and continuous time). We need to find their transi-
tion probability, which describes the propagator. In case
of discrete random walk, it is P;;(t), which describes the
probability of being in state j at time ¢ after jump from
state i. In case of CTRW it is P(y,? | x), which describes
the probability of being at state y after state x at time ¢ .
To find the transition probability we introduce the condi-
tional arrival probability J;;(f) in case discrete random
walk and J(x,?) in case of continuous random walk .
This method helps us to derive the stochastic models with
memory effect, taking into account the time distribution
and jump distribution.

CONDITIONAL ARRIVAL
PROBABILITY

Discrete Random Walk

In order to find the master equations of the transition
probability for continuous time random walk with dis-
crete state space, we introduce the theory of conditional
arrival probability. First we assume the jump process X;
takes N states. We define the conditional transition prob-
ability as follows

Pij)=PriX;=jlXo=1i}, i,j=12,.,N

which is the probability that the process X, starts from
state i at # = 0 and it is at state j at time ¢. We introduce

o

FIGURE 1. Conditional arrival probability J;;(t— 1) from
state i to state j, and conditional transition probability P;;(t).

the conditional arrival probability J;;(¢) as the probability
that the process X; starts from state i at time ¢ = 0 and
arrives at state j at time #; see figure 1. Consider ¢;(?)
the probability density function for the waiting time at
state j. The survival function ¥';(¢) is given by

00 !
‘I’j(t)=f ¢j(t’)dt’=1—f0¢j(t’)dt’, (1)

which is the probability that no steps are taken in the
time interval [0, 7). Moreover, the n X n transition matrix
H with the matrix entries 4;; denotes the transition rate
from state i to state j and satisfies'

N

Jj=1

1. )

If h;; = 1 only when j=i+1 and zero otherwise, then
the discrete random walk process represents a counting

! The transition rates must be given constants for each transition.
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process. The balance equation for J;;(z) is

lj(t) Z f Jir(t - T)¢k(T)hkde + ¢l(t)hlj 3)

k#j

It follows from the law of total probabilities that P;;(z)
obeys the equation

P,‘j([) = P,’j(O)‘Pj(Z) + L .]ij(l— T)\Pj(‘l')d‘!', “4)

where P;;(0) is the initial condition satisfies

Pij(0) = {

The first term in the right-hand side (RHS) of equation
(4) represents the probability of being at the initial state
times the probability of no jump up to time ¢. The second
term takes into account the probability of arriving at state
Jj from state i at time ¢ — 7 and the probability of no jump
during time 7. We assume that the jump process X; is
homogenous, thus

1
0

i=j

i#j )

Pij(t) = PriXe = j1 Xe = i} = Pr{Xp = j| Xo = i},

In order to find the master equation of the conditional
transition probability, we use the Laplace transform of
equations (3), (4)

N
D TP + Fils)hij

Jij(s) = ©)
k#j
Bii(s) = Pij(0)F(s)+ ()P (s). )
From (7) we obtain
_ 1](5) \P(S)
Jij(s) = 05) P;; (O )\P I ®)

substitution of (8) into (6) and applying the definition of
the initial condition (5), we get

Pij(s)
Pis)

N
Py = > P 24,

®
& o™

To get the conditional transition probability, we rear-
range equation (9) and use the definition of kernel func-

tion K(s) = Pis)

TATE we obtain

N
Pij(s) = Pij(0)¥(s) + Z Pi()Ki()hij¥j(s).  (10)
k)

If the waiting time is independent identically distributed
(iid) random variables for all states then (10) becomes

Pij(s) =

N
PO () + ) Pu(9)d()hj. (1)

k#j

640

By inverting Laplace transform, it yields

Pij(r) = 11(0)‘1’(0+Zf Pi(t=1)¢p(Dhyjdr.  (12)

k#j

The first term in RHS represents the process starting
from the origin and staying there until time #; the second
term includes the contribution from the jump to state j
from different states k and waiting up to time ¢.

To get the master equation of the conditional transition
probability P;;(r) for discrete random walk, we move the
first term in the left-hand side in equation (9) to the right
and add sP;;(s) to both sides, then we use the definition

of the survival function in Laplace domain, P(s) = @,
and the definition of kernel function, imply
sPij(s)—Pij(0) = —K(s)P;(s)
N
+ > Pu()R(s)luj.  (13)
k#j

Inverting Laplace transform with convolution theorem
gives the master equation in time domain

dP,'j(t)
dt

= —fK(T)Pij(t—T)dT

+Z f K@Pi(t—0hijdr.  (14)

k#j

Next we are going to find the master equations for the
conditional transition probability corresponding to dif-
ferent waiting time distributions in the Laplace domain
by using the previous equations (11) and (13). Then we
convert them to time domain to find the memory effect
models.

Exponential distribution waiting time:

Let the waiting times ¢ are independent identically
distributed and follow an exponential distribution, i.e.

¢ =me™, >0, (15)

where m is a positive constant called the rate parameter.
The expected value of the distribution is 1/m and the
variance is 1/m2. From figure 2, we can see some
features of an exponential distribution: the probability
density declines monotonically as the value of waiting
time increases, and the curve is steeper as the parameter
m is larger. Therefore in this particular case, the waiting
time is more likely to be very small and long waiting time
seldom happens.

The Laplace transform of the distribution’s PDF is

P(s) =

, (16)
m+s
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FIGURE 2. The probability density of exponential distribu-
tion with various rate parameter .

and for survival function

P(s) =

a7

m+s

Therefore, the kernel function will be
K(s)=m.

Substituting the value of kernel function in (13) gives the
master equation in Laplace domain, then by inverting to
time domain

dPij(1) o
— = mPy(0+m ) Puh

k#j

This master equation is a classic forward Kolmogorov
equation [1], and the conditional transition probability
(12) is

Pij(n) = Pij(0)e™

N t
+ Z m]o‘ e_mTP,'k(t—T)hkde,

k#j

The process in this case is Markovian because there is
no memory effect. This means the current state of the
process at time ¢ does not depend on any previous states
at the previous history.

Gamma distribution waiting time:

If the waiting time has gamma distribution then

o(t) = ﬁ—at““e‘ﬁ’,

@ t>0, (18)

where « is the shape parameter and ( is the scale pa-
rameter and both SB,a are positive. The expected value
of the distribution is /3 and the variance is a/3*>. Appar-
ently, when @ = 1 the equation (18) reduces to the form

PDF

FIGURE 3. The probability density of gamma distribution
with shape parameter o = 2 and various scale parameter (.

of exponential distribution, hence exponential distribu-
tion is a special case of gamma distribution. It is clear
from figure 3 that the curve of gamma distribution has
only one peak and the peak moves as the parameters a,f3
vary. Thus gamma distribution can allow for longer wait-
ing times if the proper parameters are chosen.

We will choose the case when @ = 2 as an example of
Gamma distribution to see the memory effect this distri-
bution. The waiting time PDF is

o) = p*te P,

Using the Laplace transform for the PDF, we obtain the
following functions

- B

b= (19)
o _ s+26

Y= (20)
. B

K(S)_s+2ﬁ'

Inserting them in (13) yields the master equation in the
Laplace domain. Hence, in the time domain the master
equations will be

N !
Z,Bz f e P Py (1 - T)hyjdt

Pij(t)y =
zj V0
+P;j(0)e P (Bt + 1),
dPl“ t !
aPi(1) = —,Bzfe_zﬂTP[j(l—T)dT
dt 0

N
iy fo e TPyt —T)hyjdr.

k#j

Here we can notice the time integral in the right-hand
side, which is evidence of memory effects. So the master
equation in the case of gamma distributed waiting time
is non-Markovian.
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FIGURE 4. The probability density of Pareto distribution
with various parameter 8 and minimum value equals one.

Power-law distribution waiting time:
In the case when the waiting time has a heavy-tailed or

power-law distribution, its PDF can be in the following
form

B__ 60 g<p<t,

¢(1) ~ )

for t— co. 21

Power-law distribution issued in the description of open
system [2]. Power-law correlation is observed in a critical
state of an infinite system, but if the system is finite,
the finiteness limits the range within which the power-
law behavior can be observed. One form of power-law
distribution is called Pareto distribution, which has the
following PDF

t>b, (22)

0 for t<b,

i

#(f) = { % for
where b is the minimum possible value of ¢ and 8 is
a positive parameter. Figure 4 shows Pareto PDF when
the minimum value is one and B has various values.
This distribution has expected value when 8 > 1 equal
to Bb/(B—1) or B/(B—1) for b = 1. Also it has variance
equal to (b/(B— 1))2(3/(ﬁ— 2)) that exists only for 8 > 2.
Another example of power-law distribution is the Mittag-
Leffler function that is given in [9]

d
o(t) = —d—tEﬁ(—zﬂ), Y1) = Eg(—1).

This function has a Laplace form such as

B(s) = , 23

¥ = 5 (23)
therefore the survival function will be

~ -1

Y(s) = (24)

1458

and the kernel function is

k(S) = F

By substituting the kernel function in (13), and multiply-
ing the equation by s5~!, implies

N
LPij(9) = PG0) = ~Piy(s)+ ) Puls)h,.

k)

So, in the time domain we obtain

N t
d
Pi(t) = — | —Eg(-P)Py(t—1)hyjd
0 ; deT 5(—T0) Pyt = Thy jd
+P;;(0)Eg(—1P), (25)
dPP;; al
y t;ft) = =P+ ) Pu(®h;. (26)
k#j

The memory effect appears in equation (25) due to the
Mittag-Leffler function and in equation (26) due to the
Caputo fractional derivative in the left-hand side, which
is defined as [10]

4P
a

t
r'd-p)

P(1) P(0).

27)

d 8
- -« A\ Bgr_
“Ta B dr f(; P(t)(t—1)"Pdr

Statistical properties

In this section we are going to find the first two mo-
ments for continuous time random walk with discrete
states (discrete random walk). Back to the master equa-
tion (14), and consider the case when

1
hijI{ 0

in this case, the solution of the master equation (12) is a
counting process, which has the master equation (14)

qu,'(t) a
dr

if j=i+1
otherwise

!
f K(t—-1)Pj_1(v)dr
0

t
- f K(1=1)Pj(7)dr,
0
with Laplace form:
$Pj(5)= Po(0) = K()Pj-1(5) = R(5)P(s).

We use the induction method to find the probability
density P;(s) in the Laplace form. So for general j we
have

J
Pi(s) =" PO (s)¥(s),
i=0
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since P;(0) = 0Yi # 0, thus
Pi(s) = ¢/(9)P(s). (28)

Therefore its expected value is

v _ é(s)
<X(s)> = ZJP (s5) = ‘P(s)(l T
Lf), (29)
s(1—¢(s))
and the second moment will be
o2 T 25 oy o 8O+ B(s))
<X(s) > ]Z:;)] Pio) =050
_ P(s)(1 jr(?ﬁ(S)). 30)
s(1—(s))?

Counting process with Exponential waiting time

If we use the Laplace formula for the exponential
distribution (16), (17) in (28), we get

mj
(m+ s)/+1

ISJ'(S) =

this formula is the Laplace transform of the Poisson
process. The expected value of this distribution in the
Laplace domain is given by

< X(s)>= Z JPi(s) =

j=0

Again this is the Laplace formula of (mt), the expected
value of the process in the time domain. In the same way
we can find the second moment
2m?
< X2(s5) >= Zﬂp ()= 5+~

j=0
accordingly,
< X,2 >=mt +m*i*.

In this case we may notice the process has no memory
due to, the second moment is a linear power of time.

Counting process with Gamma distribution waiting time

If we substitute the Laplace form of gamma waiting
time PDF (19) when a = 2, and its survival function (20)
into (28), the counting process will have the following
Laplace form distribution

B(s+2B)

(S +[3)2/+2

Pi(s)=——F—

From equation (29), the expected value is
,82
s2(s+2pB)°

Similarly, we obtain the second moment from equation

(30)
B 2!
s2(s+28) * $3(s+28)%
Using the inverse Laplace transform with the convolution
theorem, the expected value is

< X(s) >=

< X*(s)>=

1 ) ﬂt
X = — ﬁt_l + =,
< X; > [e ] 3

while the second moment will be

1 pt ﬂ2t2 e P
2 2 2

The expected value and the second moment are the com-
bined linear function of ¢ and the monotonic exponen-
tially decreasing function of ¢. However, for long time
t — oo they will be a proportional function of time.

<X2 >= —

— B+ 11

Counting process with power-law distribution waiting
time

In this case, we are going to use the Laplace trans-
forms of the Mittag-Leffler function as an example of
power-law waiting time PDF (23) and its survival func-
tion (24). Inserting them into (28), the counting process
will have the following Laplace form distribution

P! 1
Pil9)= (1+58) (1+sA)]

The expected value is obtained from (29)

- 1
< X(s) >= F’
and the second moment can be found from (30)

2

- 1
2 _
< X“(s) >= o + 5T

Inverting them to the time domain, yields :

<X, >= # s
r+1)
and
B 21%8
<X?>= + , 0<B<l.
rB+1) TC2B+1)

The expected value and the second moment are non-
linear functions of time. It is decaying very slowly as
t — co due to the power-law form formula which is strong
evidence of memory effects.
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Continuous Random Walk

In the previous section we assumed the jump process
X; has discrete state space, and we derived the master
equations for the transition probability corresponds to
different distributions of waiting time. These equations
depend on the kernel function K and the transition matrix
H. The Laplace transform and its inverse play the main
role in the derivation. In this section we generalize the
continuous time random walk to include the continuous
state space, i.e. the state space is the set of real numbers.
Also the kernel function is the main factor to derive
the master equations besides the jump distribution PDF.
Unlike the previous section, here the Fourier-Laplace
transform and its inverse will play a fundamental role
in the whole processes of derivation and the summation
sign will be replaced by the integral sign.

The conditional transition probability P may be defined
as

b
f P(y,t|x)dy=Pria<X; <b| Xy = x},
a

P(y,t| x) gives the probability of finding the process X;
in the interval (y,y + dy) provided Xy = x. Here x is the
backward variable and y is the forward variable. Again
we consider the homogenous jump process as in the
discrete state space. The initial condition is

P(y,0]x)=0d(-x).

The conditional arrival probability J(y,? | x) means the
process starts from x at time zero and arrives y at time ?.
To find it we need the waiting time PDF at point x which
is ¢(x,1), the survival function ¥(x, ¢) and the probability
density for the jump process X; from point x to point y
which is w(y | x). Now, let us write the balanc equation
for J(y,t| x)

Jout1x) = Jy o It =71 0¢GE W | 2)dz
+o(x, w(y | x), €19}
Accordingly, from the law of total probability we have

the equation for conditional transition probability P(y,? |
x) such as

xX<z<y.

P(y,t| %) = 6(y— x)P(x,1)

!
+f Jy,t—7 | x)P(Qy,1)dT. (32)
0
Let us consider the case when the waiting time distribu-
tion is independent identically distributed, i.e. ¢(x,t) =
¢(?). Transferring equations (31) and (32) to the Fourier-
Laplace transform give

Jtk,s) = Jk,s)plsyinik)
) +$(S)W(~k), (33)
Pk,s) = W(s)+J(k, 5)P(s). (34)

644

From (34), we have

Substituting the last formula into (33), yields

Plk,s) L P(k, 5)

W) = %) d(syw(k), (35)
hence
Plk,s) = Pk, $)d(s)wk)+F(s), (36)
or _
Py = —Dfo®
1 = @(s)w(k)
_ (1 =(s))Po(k) 37)

s(1 = g(s)w (k)

The last equation is equivalent to the Montroll-Weiss
equation [1]. By inverting Fourier-Laplace, the equiva-
lent of equation (36) in the time domain is

P(y,1x) S(y—x)P()
+ fR P(z,t — 1|x)p(t)w(z]x)dz.

Recalling equation(35) and adding sIXJ(k, s) to both sides
then rearranging it to obtain the master equation

sP(k, s) — Po(k) = —K(5)P(k, s) + P(k, s)R (s)W(k).

The inverse Fourier-Laplace transform gives the follow-
ing master equation

ﬁP(y, 1) —f K(@P@y,t—1)dt
ot 0

!
+ffK(T)P(Z,I—T)w(y—z)dzdf.
0 JR
(38)

or

a !
FPo = [ Ko[-Pou-n

!
+ f f P(Z,t—‘r)w(y—z)dz]dr.
0 JR

Our following tasks consider the jump process with dif-
ferent continuous PDF, such as Gaussian distribution and
Lévy distribution. Then we find the master equation for
conditional transition probability in the case when the
waiting time has no memory, like exponential distribu-
tion, and when it has memory, such as power-law distri-
bution.
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FIGURE 5. The probability density of zero-mean Gaussian
distribution with various variance.

Gaussian distribution jump process

If the jump process follows a zero-mean Gaussian
distribution, then its PDF has the form

w(x) =

1
\2no2 ’

where o2 is the variance of the distribution. From the
properties of Gaussian distribution, (see figure 5), the
process jumps to a state near to where it was at previous
time instant and the large jumps seldom occur. In the
hydrodynamic limit, we can get the approximation of
w(k)

272

k 2j2
Wo(k) = I—O-XT+0(k2)~ 1= &8

7 k— 0.

(39)
Here, in the hydrodynamic domain the limit of k — 0 is
equivalent to x — oo in the space domain.

CTRW with Gaussian jump process and Exponential
waiting time:

This case in long-time limit corresponds to Brownian
motion when the waiting time’s mean and jump’s vari-
ance are finite. To obtain the master equation for the pro-
cess in Fourier-Laplace domain equations (37), we use
the definition of exponential distribution PDF in Laplace
transform (16) in the case of invariant waiting time. For
the jump process we use the Fourier transform of Gaus-
sian jumps PDF (39). Therefore,

Pis) = PO (40)
s+ m%"k2
X A (mO'JZCkZ) X
sP(k,s)—Py(k) = - P(k, s).
41

645

By inverting the Fourier-Laplace transform, we obtain
the diffusion equation when the jump’s process follows
Gaussian distribution with exponential waiting time

2
@P(X, D),

mo
2

2
X

0
EP(X’ 1= (42)

where the Fourier transform F {‘%P(x, 1) = —k*P(k,1)}.
The solution of equation (42) in the time domain is well-
known Gaussian, due to the case of finite jump’s variance
and finite waiting time’s mean (for more details see [1])

1
\2ro2mt eXp( )

The second moment of the CTRW in Laplace form can
be obtained from

2

X

Peen= B
X

& p(k, s)

R2(s) >= -
< X“(s) > o

k=0 - (43)

By using (40), this implies

m0'2

s2 7

& p(k, s)
ok?

lk=0=—
which in the time domain will be
< X? >=mot.

Here we can notice that the process has no memory due
to the second moment is a linear power of time.

CTRW with Gaussian jump process and Power-law
waiting time:

Here the waiting time PDF is heavy-tailed, so that the
mean waiting time is infinite while the jump’s variance
is still kept finite. The asymptotic behavior of a heavy-
tailed waiting time PDF is given by

o) ~ )1 as 1 oo, (44)
Consequently, the long time limit corresponds to
d(s)~1-(sP as s—0, (45)

where A is a parameter with units of time. Similarly,
inserting these Laplace transforms of power-law PDF
and the Fourier transform of jump distribution PDF (39)
into (37) obtains the master equations as follows

$SLPy (k)
Sﬁ + Kﬁkz
~(Ksk?) Pk, 5),

P(k, s) (46)

PPk, s)— £ 1Py (k)
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where K = 02/(22%). Hence, the master equation is a
time-fractional equation (see [8])

2

& —P(x,1) = 2 —P(x,1),

g 47)
where %P(x, t) is the Caputo fractional derivative de-
fined by eqrefcaputo.The time-fractional equation (47)
is equivalent to the Fractional Fokker Planck equation
given by Barkai er al.[3], with solution equivalent to (46)
in the Laplace-Fourier domain. A closed-form solution
for (47) can be found in terms of the Wright function (see
[4]) and in terms of the Fox function such as(see [1])

(1-B/2.)
[ (0,1),(1/2,1) |

x2

2,0
H 4Kﬁtﬁ

1
1,2
R [47TK/;IB

The second moment of CTRW can be found by substi-
tuting (46) into (43), hence

P(x,1) =

Accordingly, in the time domain it will be
2

ox B
BTB+1)

2Klgl’8 _ g
rg+1)

In this result the second moment is a fractional power, so
the process has long memory.

<X,2 >=

Lévy distribution jump process

Lévy distribution looks similar to normal distribution
in the center, but the tails are much flatter than those
of Gaussian distribution. The variance of this PDF is
infinite. There is no general explicit form for w(x), but
the Lévy distribution may be written as a power-law
distribution for a large value of stochastic variable x [2]

(l|x| (a/+l)

w(x) ~ o for |x|>0,, O<a<?2.

In a hydrodynamic limit of jump it will have the form,

w(k) = exp(=aSlk|™) ~ 1 —ok|*, for k—0. (48)
The fact that power-law distribution may lack a typi-
cal scale is reflected in Lévy processes, by the property
that the variance of Lévy processes is infinite for a < 2.
Stochastic processes with infinite variance are extremely
difficult to use and raise fundamental questions when ap-
plied to a real system. For example, in the finance system,
an infinite variance would complicate the important task

of risk estimation.
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CTRW with Lévy jump process and Exponential waiting
time:

Although the jump length variance is infinite, the pro-
cess is of Markovian nature due to the finiteness of the
waiting time’s mean [5]. We apply the same procedure
when the waiting time is exponentially distributed and
has the Laplace forms (16) for its PDF and the jump
process has Lévy distribution corresponding to (48) in a
Fourier domain. Consequently, the master equations (37)
will be

Po(k)
s+mo®kle’

~Kolkl" Pk, 5),

Pk, s)

sP(k,s)— Po(k) =
where K, = mo§. Inverting the Fourier-Laplace trans-
form to get the master equation in time-space domain

102

K(Z

0
_p -
£y (x,0) e

P(x,1), (49)

where % is space-fractional derivative known as Riesz
fractional derivative of order @,0 < @ < 2 defined by [8]

P =T(1 + ) SO/
O|x|@ T
j;oo P(x+&)— 2;1’5? +P(x-¢) dé.

The space-fractional derivative are obtained from the
assumption that the random jump has a Lévy distribution,
with power-law tails. The solution of the fractional space
differential equation (49) can be obtained by using the
Fox function, the result being [1]

(1, 1/a),(1,1/2)
(1,1),(1,1/2)

x|
(Kar)l/ad

P(x,f) = H2 ol |

For limit @ — 2, (49) goes to the diffusion equation
and the classical Gaussian solution is recovered. When
m = o, = 1, the solution of the space-fractional derivative

equation C,%P(x, t)= %P(x, t) as given by Scalas [7]

P(x,) =17 Lo(ar™/®),

where L, is the Lévy standardized probability density

function:
1 00
L = —
(%) " f_m

The second moment of CTRW in the case of exponential
waiting time and Lévy jump process < X >— co when
0 < @ < 2, for @« =2 corresponds to the case of the
Gaussian jump process.

exp(—igx—|q|")dg
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FIGURE 6. The probability density of Lévy distribution

CTRW with Lévy jump process and Power-law waiting
time:

In this case CTRW has heavy-tailed distribution for
both waiting time and jump process. Accordingly, the
waiting time’s mean and the jump’s variance are both
infinite. Substituting the Laplace forms of power-law
waiting time (45), the Fourier form of Lévy jump process
(48) into (37) gets the master equations of CTRW, thus

B BBy(k)
S[AB P + ok|e]’
PPy (k)
P + Ko glkl®”
—Ka glkI* Pk, 5),

P(k, s)

PPk, 5) - P71 Po(k)

where K, = 09/, Hence, the master equation is a
space-time fractional derivative equation [8]

%P(x,t)zl(a - P(x,1). (50)

P B ol
The solution of this equation, when A = o, = 1, is defined
by Scalas [6]

P(x,1) = tP1W, p(xr7PI),

where W, g(u) is given by

1~
Wosl = 5 [ dke M-kt

that is the inverse Fourier transform of a Mittag-Leffler
function. In the case 8 =1 and « = 2, the fractional
equation reduces to the ordinary diffusion equation and
the solution P(x,f) becomes the Gaussian probability
density function as demonstrated in (42) and its solution.
In the general case 0 <8 < 1 and 0 < a < 2, the function
Wep(u) is still a probability density function evolving
in time and it belongs to the class of Fox function.
Finally, the second moment of CTRW also diverges. In
[1] they found another value for the second moment
called imaginary mean squared displacement.
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CONCLUSION

In this work we demonstrated our method of conditional
arrival probability, which was used to derive the condi-
tional transition probability for the random walk with
continuous time and discrete states or continuous states.
In addition to the arrival probability we used different
time of waiting time distribution in the case of random
walk with discrete states, and different waiting time dis-
tributions and jump distributions in the case of random
walk with continuous states. We got many stochastic
models with memory effect depending on the waiting
time distribution. Also we explained the memory effect
of the process from its second moment. Our future work
is finding a numerical solution for these models.
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