Chapter 2: MOTION ALONG A STRAIGHT LINE

Choose the correct answer:

1. Suppose the motion of a particle is described by the equation: $\mathbf{X}=\mathbf{2 0 + 4} \mathbf{t}^{\mathbf{2}}$. Find the instantaneous velocity at $\mathbf{t}=5 \mathrm{~s}$?
(a) $16 \mathrm{~m} / \mathrm{s}$
(b) $60 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) $36 \mathrm{~m} / \mathrm{s}$
2. A ball thrown vertically upward with an initial velocity of $\mathbf{1 2} \mathbf{~ m} / \mathbf{s}$, what is the ball's maximum height?
(a) 7.35 m
(b) 14.7 m
(c) 0.61 m
(d) 1.22 m
3. A body moves along the x-axis with constant acceleration $\mathbf{a}=\mathbf{4} \mathbf{m} / \mathbf{s}^{\mathbf{2}}$. At $\mathbf{t}=\mathbf{0}$ the body is at $\mathbf{x}_{\mathbf{0}}=\mathbf{5} \mathbf{m}$ and has velocity $\mathbf{v}_{\mathbf{0}}=\mathbf{3} \mathbf{~ m} / \mathrm{s}$. Find its position at $\mathbf{t}=\mathbf{2} \mathbf{s}$?
(a) 14 m
(b) 19 m
(c) 15 m
(d) 18 m
4. Suppose the velocity of the particle is given by the: $\mathbf{v}=\mathbf{1 0 + 2} \mathbf{~} \mathbf{t}^{\mathbf{2}}$ where \mathbf{v} is in m / s and \mathbf{t} is in s. Find the change in velocity of the particle in the time interval between $\mathbf{t}_{\mathbf{1}}=\mathbf{2} \mathbf{s}$ and $\mathbf{t}_{\mathbf{2}}=\mathbf{5} \mathbf{s}$?
(a) $41 \mathrm{~m} / \mathrm{s}$
(b) $14 \mathrm{~m} / \mathrm{s}$
(c) $24 \mathrm{~m} / \mathrm{s}$
(d) $42 \mathrm{~m} / \mathrm{s}$
5. In question 4, Find the instantaneous acceleration when $\mathbf{t}=\mathbf{2 s}$?
(a) $4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $14 \mathrm{~m} / \mathrm{s}^{2}$
(c) $8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $18 \mathrm{~m} / \mathrm{s}^{2}$
6. Which pair of the following initial and final positions along the x-axis give a positive displacement?
(a) $-3 m,+5 m$
(b) $-3 m,-4 m$
(c) $5 m,-3 m$
(d) $4 m, 3 m$
7. You walk a distance $\mathbf{1 . 2 2} \mathbf{m}$ in $\mathbf{1} \mathbf{s}$ and then run a distance 3.05 m in $\mathbf{1 ~ s}$, what is your average speed?
(a) $0.92 \mathrm{~m} / \mathrm{s}$
(b) $4.27 \mathrm{~m} / \mathrm{s}$
(c) $2.14 \mathrm{~m} / \mathrm{s}$
(d) $1.83 \mathrm{~m} / \mathrm{s}$
8. The following are equations of the velocity $v(t)$ of a particle, in which situation the acceleration is constant?
(a) $v=3 t+6$
(b) $v=4 t^{2}$
(c) $v=3 t^{2}-4 t$
(d) $v=5 t^{3}-3$
9. A particle's position on the x-axis is given by $X=8-5 t+25 t^{2}$, with X in meters and t in seconds. Find the particles velocity function?
(a) $v=-5+25 t$
(b) $v=-5+50 t$
(c) $v=8-5+25 t$
(d) $v=8+5+50 t$
10. A rocket ship moves with constant acceleration equal to $9.8 \mathrm{~m} / \mathrm{s}^{2}$, if it starts from rest how long will it take to reach a velocity $\frac{1}{10}$ the velocity of light? ($\mathrm{V}_{\text {light }}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
(a) $3.1 \times 10^{5} \mathrm{~s}$
(b) $3.1 \times 10^{7} \mathrm{~s}$
(c) $3.1 \times 10^{6} \mathrm{~s}$
(d) $3.1 \times 10^{4} \mathrm{~s}$
11. In question 10, how far will the rocket ship travel?
(a) $4.6 \times 10^{13} \mathrm{~m}$
(b) $4.6 \times 10^{10} \mathrm{~m}$
(c) $4.6 \times 10^{12} \mathrm{~m}$
(d) $4.6 \times 10^{11} \mathrm{~m}$
12. A ball thrown vertically upward with an initial velocity of $\mathbf{1 2} \mathbf{~ m} / \mathrm{s}$, how long does the ball take to reach its maximum height?
(a) 0.74 s
(b) 1.35 s
(c) 0.82 s
(d) 1.22 s
13. A car moving with a constant acceleration covered a distance between two points $\mathbf{6 0} \mathbf{~ m}$ apart in $\mathbf{6} \mathbf{s}$, what was its initial speed if the final speed was $\mathbf{1 5} \mathbf{~ m} / \mathbf{s}$?
(a) $-10 \mathrm{~m} / \mathrm{s}$
(b) $-5 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $17.5 \mathrm{~m} / \mathrm{s}$
14. The instantaneous acceleration a equals:
(a) $\frac{d x}{d t}$
(b) $\frac{d}{d t}\left(\frac{d^{2} x}{d t^{2}}\right)$
(c) $\frac{d^{2}}{d t^{2}}\left(\frac{d x}{d t}\right)$
(d) $\frac{d}{d t}\left(\frac{d x}{d t}\right)$
15. Suppose the motion of a particle is described by the equation: $\mathbf{X = \mathbf { 2 0 } + \mathbf { 4 } \mathbf { t } ^ { \mathbf { 2 } } \text { . Find the }}$ average velocity of the particle in the time interval $\mathbf{t}_{\mathbf{1}}=\mathbf{2} \mathbf{s}$ to $\mathbf{t}_{\mathbf{2}}=\mathbf{5} \mathbf{s}$?
(a) $29 \mathrm{~m} / \mathrm{s}$
(b) $28 \mathrm{~m} / \mathrm{s}$
(c) $84 \mathrm{~m} / \mathrm{s}$
(d) $10 \mathrm{~m} / \mathrm{s}$

16. In question 15, Find the instantaneous velocity at $\mathbf{t}=5 \mathbf{s}$?

(a) $16 \mathrm{~m} / \mathrm{s}$
(b) $60 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) $36 \mathrm{~m} / \mathrm{s}$
17. A rock is dropped from rest from the top of a $\mathbf{1 0 0} \mathbf{~ m}$ tall building, how long does it take to fall the first $\mathbf{5 0} \mathbf{~ m}$?
(a) 3.2 s
(b) 10.2 s
(c) 20.4 s
(d) 4.5 s
18. The following are equations of the position of a particle, in which situation the velocity of the particle is constant ?
(a) $x=4 t^{2}-2$
(b) $x=-2 t^{3}$
(c) $x=-3 t-2$
(d) $x=4 t^{-2}$
19. A ball thrown vertically upward with an initial velocity of $\mathbf{1 2} \mathbf{~ m} / \mathbf{s}$, what is the ball's maximum height?
(a) 7.35 m
(b) 14.7 m
(c) 0.61 m
(d) 1.22 m
20. A body moves along the x-axis with constant acceleration $\mathbf{a}=\mathbf{4} \mathbf{m} / \mathbf{s}^{\mathbf{2}}$. At $\mathbf{t}=\mathbf{0}$ the body is at $\mathbf{x = 5} \mathbf{m}$ and has velocity $\mathbf{v}=\mathbf{3} \mathbf{~ m} / \mathbf{s}$. Find its position at $\mathbf{t}=\mathbf{2 s}$?
(a) 14 m
(b) 19 m
(c) 15 m
(d) 18 m
21. In question $\mathbf{2 0}$, where is the body when its velocity is $\mathbf{5} \mathbf{~ m} / \mathbf{s}$?
(a) 7 m
(b) 9 m
(c) 11 m
(d) 2 m
22. A man runs a distance of 1 mile in exactly 4 minutes, What is his average velocity in $\mathrm{mi} / \mathrm{hr}$?
(a) $900 \mathrm{mi} / \mathrm{hr}$
(b) $15 \mathrm{mi} / \mathrm{hr}$
(c) $6.71 \mathrm{mi} / \mathrm{hr}$
(d) $15000 \mathrm{mi} / \mathrm{hr}$
23. You walk a distance of $\mathbf{7 3 . 2} \mathbf{~ m}$ at a speed of $\mathbf{1 . 2 2} \mathbf{~ m} / \mathrm{s}$ and then run $\mathbf{7 3 . 2} \mathbf{~ m}$ in $\mathbf{2 4} \mathbf{~ s}$. What is your overall displacement?
(a) 97.2 m
(b) 73.2 m
(c) 146.4 m
(d) zero
24. In question 23, what is the time interval from the start to the end?
(a) 24 s
(b) 84 s
(c) 36 s
(d) 4.27 s
25. If $\mathbf{t}_{\mathbf{1}}=\mathbf{2} \mathbf{s}$ and $\mathbf{t}_{\mathbf{2}}=\mathbf{4} \mathbf{s}$ find the average acceleration when the velocity changes from $\mathbf{8}$ m / s to $\mathbf{1 2} \mathbf{~ m} / \mathrm{s}$?
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3.33 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
26. What is the initial speed of a car moving a distance of $\mathbf{6 0 ~ m}$ in $\mathbf{6 s}$ if the final speed was $15 \mathrm{~m} / \mathrm{s}$?
(a) $-10 \mathrm{~m} / \mathrm{s}$
(b) $-5 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $17.5 \mathrm{~m} / \mathrm{s}$
27. If the total distance moved by a bus before stopping was 56.7 m with initial speed of $\mathbf{2 2 . 3 6 ~ \mathbf { m } / \mathrm { s } \text { . What is the magnitude of the acceleration? }}$
(a) $8.82 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4.41 \mathrm{~m} / \mathrm{s}^{2}$
(c) $17.63 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2.21 \mathrm{~m} / \mathrm{s}^{2}$
28. A pipe dropped from a building struck the ground with a speed of $\mathbf{2 4} \mathbf{~ m} / \mathbf{s}$. what height was it dropped from?
(a) 58.8 m
(b) 2.44 m
(c) 1.22 m
(d) 29.4 m
29. What is the initial speed of a ball thrown upward vertically reaching a height of $\mathbf{0 . 5 4 4}$ m in 0.2 s ?
(a) $4.68 \mathrm{~m} / \mathrm{s}$
(b) $3.7 \mathrm{~m} / \mathrm{s}$
(c) $2.1 \mathrm{~m} / \mathrm{s}$
(d) $0.74 \mathrm{~m} / \mathrm{s}$
30. The initial and the final positions of a particle moving along the x-axis are $\mathbf{- 2} \mathbf{m}, \mathbf{1 0}$ \mathbf{m}, then its displacement $\Delta \mathbf{x}$ equals:
(a) +12 m
(b) +8 m
(c) -12 m
(d) -8 m
31. In which situation of the following the displacement is positive?

Situation	$\mathbf{X}_{\mathbf{1}}(\mathbf{m})$	$\mathbf{X}_{\mathbf{2}}(\mathbf{m})$
\mathbf{A}	-3	5
\mathbf{B}	-3	-7
\mathbf{C}	-3	-3
\mathbf{D}	2	5

(a) A and B
(b) A and C
(c) A and D
(d) B and C
32. The position of a body moving along the x axis is given by $\mathbf{x}=\mathbf{3} \mathbf{t - 4} \mathbf{t}^{\mathbf{2}}+\mathbf{t}^{\mathbf{3}}$. Its position at $\mathbf{t}=\mathbf{2} \mathbf{s}$ is:
(a) 6 m
(b) 2 m
(c) -6 m
(d) -2 m
33. In question 32, the displacement of the object in the time interval $\mathbf{t}=\mathbf{0}$ to $\mathbf{t}=\mathbf{4} \mathbf{s}$ is:
(a) $\Delta x=3 m$
(b) $\Delta x=12 m$
(c) $\Delta x=-3 m$
(d) $\Delta x=-12 m$
34. A car travelled $\mathbf{4 0} \mathbf{~ k m}$ in $\mathbf{0 . 5} \mathbf{h}$, then travelled $\mathbf{4 0} \mathbf{~ k m}$ in $\mathbf{1} \mathbf{h}$. Its average speed is:
(a) $26.7 \mathrm{~km} / \mathrm{h}$
(b) $160 \mathrm{~km} / \mathrm{h}$
(c) $80 \mathrm{~km} / \mathrm{h}$
(d) $53.3 \mathrm{~km} / \mathrm{h}$
35. A car starts from point \mathbf{A} moved a distance $\mathbf{5 0} \mathbf{~ k m}$ to point \mathbf{B} then returns to point \mathbf{A} in a time interval of $\mathbf{2}$ hours. Its average velocity is:
(a) zero
(b) $50 \mathrm{~km} / \mathrm{h}$
(c) $100 \mathrm{~km} / \mathrm{h}$
(d) $25 \mathrm{~km} / \mathrm{h}$
36. The position of a particle moving along the x-axis is given by: $\mathbf{x}=\mathbf{2} \mathbf{t}^{\mathbf{3}}$. Its acceleration is:
(a) $6 t^{2} \mathrm{~m} / \mathrm{s}^{2}$
(b) $12 \mathrm{t} \mathrm{m} / \mathrm{s}^{2}$
(c) constant
(d) zero
37. A ball dropped from a building, its velocity and position after $\mathbf{1} \mathbf{s}$ are:
(a) $V=-9.8 \mathrm{~m} / \mathrm{s}$
(b) $\mathrm{V}=-4.9 \mathrm{~m} / \mathrm{s}$
(c) $V=-9.8 \mathrm{~m} / \mathrm{s}$
(d) $\begin{aligned} \mathrm{V} & =-4.9 \mathrm{~m} / \mathrm{s} \\ \mathrm{y} & =-4.9 \mathrm{~m}\end{aligned}$
38. An electron has an initial velocity $\mathbf{V}_{\mathbf{0}}=\mathbf{1 \times 1 0 ^ { 5 }} \mathbf{m} / \mathrm{s}$ travels a distance $\mathbf{0 . 0 1} \mathbf{m}$, if the final velocity was $\mathbf{V}=\mathbf{2} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ m} / \mathrm{s}$, then its acceleration is:
(a) $1995 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$
(b) $195 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}$
(c) $95 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}$
(d) $1.995 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$
39. A particle moving in the $+\mathbf{x}$ direction with increasing speed :
(a) Its velocity is positive and acceleration is negative
(b) Its velocity is negative and acceleration positive
(c) Its velocity and acceleration are both positive
(d) Its velocity is positive and acceleration is zero
40. In which situation of the following the velocity is in the negative x direction?

Situation	Position of the particle
\mathbf{A}	$\mathrm{X}=-2 \mathrm{t}^{2}-2$
\mathbf{B}	$\mathrm{X}=3 \mathrm{t}^{3}-5$
C	$\mathrm{X}=-2 \mathrm{t}^{-2}+1$
D	$\mathrm{X}=-5+5 \mathrm{t}$

(a) \mathbf{A}
(b) \mathbf{B}
(c) \mathbf{C}
(d) D
41. A ball is thrown vertically upward. Its displacement is:
(a) positive during rising and negative during falling
(b) negative during rising and positive during falling
(c) positive during rising and falling
(d) negative during rising and falling
42. A man walks $4 \mathbf{m}$ from point A due east, then $\mathbf{3} \mathbf{m}$ due north. What is his displacement from the point A ?
(a) 7 m
(b) 6 m
(c) 5 m
(d) 10 m
43. The following are equations of the velocity $\mathrm{v}(\mathrm{t})$ of a particle, in which situation the acceleration is constant?
(a) $v=3 t+6$
(b) $v=4 t^{2}$
(c) $v=3 t^{2}-4 t$
(d) $v=5 t^{3}-3$
44. You are throwing a ball straight up in the air. At the highest point, the ball's velocity and acceleration are:
(a) $v=0$
(b) $v=v_{0}$
$a=-g$
$a=0$
(c) $v>v_{0}$
(d) $v<V_{0}$
$a=-g$
$a<-g$
45. If the sign of the velocity and acceleration of a particle are opposite, then the speed of the particle
(a) is zero
(b) decreases
(c) increases
(d) does not change
46. A particle moves from $x_{1}=\mathbf{5} \mathbf{~ m}$ to $x_{2}=\mathbf{1 2} \mathbf{~ m}$, then:
(a) Δx is positive
(b) Δx is negative
(c) Δx is zero
(d) $\Delta x=12 m$
47. You walked a distance of $\mathbf{2} \mathbf{~ k m}$ along a road in $\mathbf{0 . 5} \mathbf{h}$, then walked back to the initial position in $\mathbf{0 . 7 5} \mathbf{h}$. Your overall displacement is:
(a) 6 km
(b) 0
(c) 4 km
(d) 2 km
48. In question 62, your average speed is:
(a) $5.3 \mathrm{~km} / \mathrm{h}$
(b) $1.6 \mathrm{~km} / \mathrm{h}$
(c) $3.2 \mathrm{~km} / \mathrm{h}$
(d) 0
49. The position of a car changes from $\mathbf{x}_{\mathbf{1}}=\mathbf{2 0} \mathbf{~ m}$ to $\mathbf{x}_{\mathbf{2}}=\mathbf{1 0 0} \mathbf{~ m}$ in the time interval from $\mathbf{2 s}$ to $\mathbf{4 s}$, the average velocity of the car is:
(a) $40 \mathrm{~m} / \mathrm{s}$
(b) $30 \mathrm{~m} / \mathrm{s}$
(c) $45 \mathrm{~m} / \mathrm{s}$
(d) $25 \mathrm{~m} / \mathrm{s}$
50. The position of a particle is given by: $\mathbf{x}(\mathbf{t})=\mathbf{1 0 + \mathbf { t } ^ { \mathbf { 2 } }}$, the instantaneous acceleration at $\mathbf{t}=\mathbf{1} \mathbf{s}$ is:
(a) $8 \mathrm{~m} / \mathrm{s}^{2}$
(b) $6 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}^{2}$
51. The free fall acceleration is:
(a) zero
(b) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(c) $+9.8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-32 \mathrm{~m} / \mathrm{s}^{2}$
52. In which situation of the following the velocity is constant ?

Situation	Position of the particle
A	$\mathbf{X = 3 \mathbf { t } - \mathbf { 2 }}$
B	$\mathbf{X}=\mathbf{2} \mathbf{t}^{\mathbf{2}} \mathbf{- \mathbf { 2 }}$
C	$\mathbf{X = - 2 \mathbf { t } ^ { \mathbf { 3 } }}$
D	$\mathbf{X}=\mathbf{2 - 5} \mathbf{t}^{\mathbf{2}}$

(a) \mathbf{A}
(b) B
(c) \mathbf{C}
(d) D
53. A car starts from rest, travels with constant accelertion a distance $\mathbf{5 0 0} \mathbf{m}$, the final velocity is $\mathbf{5 0} \mathbf{~ m} / \mathbf{s}$. Its acceleration is:
(a) $1.6 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
54. The equation that represents the motion with constant acceleration is:
(a) $v^{2}=v_{0}^{2}+2 a t$
(b) $v=v_{0}+2 a\left(x-x_{0}\right)$
(c) $x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
(d) $v=v_{0}+\frac{1}{2} a t^{2}$
55. When an object is thrown vertically upward \uparrow, while it is rising:
(a) its velocity and acceleration are both upward \uparrow
(b) its velocity is upward \uparrow and its acceleration is downward \downarrow
(c) its velocity and acceleration are both downward \downarrow
(d) its velocity is downward \downarrow and its acceleration is upward \uparrow

Are the following statements (True \checkmark) or (False \mathbf{x}) ?
56. Speed is the magnitude of instantaneous velocity.
(a) True
(b) False
57. Average acceleration is the ratio of (النسـبة بـين) the change of velocity Δv to the time interval $\Delta \mathrm{t}$.
(a) True
(b) False
58. The free fall motion is an example of motion along a straight line with constant acceleration.
(a) True
(b) False

