proparty of limit

$$
\begin{aligned}
1-\lim _{x \rightarrow}[f(x) \pm g(x)] & =\lim _{x \rightarrow} f(x) \pm \lim _{x \rightarrow} g(x) \\
2-\lim _{x \rightarrow}[f(x) \cdot g(x)] & =\lim _{x \rightarrow} f(x) \cdot \lim _{x \rightarrow} g(x) \\
3-\lim _{x \rightarrow}\left[\frac{f(x)}{g(x)}\right] & =\frac{\lim _{x \rightarrow} f(x)}{\lim _{x \rightarrow} g(x)} \\
4-\lim _{x \rightarrow}[c f(x)] & =c \lim _{x \rightarrow} f(x) \\
5-\lim _{x \rightarrow}[f(x)]^{n} & =\left[\lim _{x \rightarrow} f(x)\right]^{n}, n \text { is an integer number } \\
6-\lim _{x \rightarrow}[f(x)]^{n} & =\left[\lim _{x \rightarrow} f(x)\right]^{n}, n \text { is an rational number if } \mathrm{n} \text { is even } \Rightarrow \lim _{x \rightarrow} f(x)>0
\end{aligned}
$$

or we can written as

$$
\begin{aligned}
\lim _{x \rightarrow} \sqrt[n]{f(x)}= & \sqrt[n]{\lim _{x \rightarrow} f(x)}, \text { if } n \text { is even } \Rightarrow \lim _{x \rightarrow} f(x)>0 \\
& 7-\lim _{x \rightarrow} a^{f(x)}=a^{\lim _{x \rightarrow} f(x)}
\end{aligned}
$$

simmilar,

$$
\begin{gathered}
\lim _{x \rightarrow} e^{f(x)}=e^{\lim _{x \rightarrow f} f(x)} \\
8-\lim _{x \rightarrow}\left[\log _{a}[f(x)]\right]=\left[\log _{a}\left[\lim _{x \rightarrow} f(x)\right]\right] \text { such that } \lim _{x \rightarrow} f(x)>0
\end{gathered}
$$

simmillar,

$$
\begin{aligned}
& \lim _{x \rightarrow}[\ln [f(x)]]=\left[\ln \left[\lim _{x \rightarrow} f(x)\right]\right] \text { such that } \lim _{x \rightarrow} f(x)>0 \\
& 9-\lim _{x \rightarrow}[\sin [f(x)]=\left[\sin \left[\lim _{x \rightarrow} f(x)\right],\right. \\
& \lim _{x \rightarrow}[\cos [f(x)]=\left[\cos \left[\lim _{x \rightarrow} f(x)\right],\right. \\
& \lim _{x \rightarrow}[\tan [f(x)]=\left[\tan \left[\lim _{x \rightarrow} f(x)\right],\right. \\
& \lim _{x \rightarrow}[\cot [f(x)]=\left[\cot \left[\lim _{x \rightarrow} f(x)\right]\right. \\
& \lim _{x \rightarrow}[\sec [f(x)]=\left[\sec \left[\lim _{x \rightarrow} f(x)\right]\right. \\
& \lim _{x \rightarrow}[\csc [f(x)]=\left[\csc \left[\lim _{x \rightarrow} f(x)\right]\right.
\end{aligned}
$$

simillar for the invers trigonometric function.

The Sandwich Theorem:

if the function $f(x)$ satisfy the condition

$$
g(x) \leq f(x) \leq h(x)
$$

and

$$
\lim _{x \rightarrow} g(x)=\lim _{x \rightarrow} h(x)=L
$$

Then,

$$
\lim _{x \rightarrow} f(x)=L
$$

use direct or if you see $\cos (\infty)$ or $\sin (\infty)$

To find the limit of function:

1- constant finction:

limit approchis to point a

$$
\lim _{x \rightarrow a} c=c
$$

One side limit

$$
\begin{aligned}
\lim _{x \rightarrow a^{+}} c & =c \\
\lim _{x \rightarrow a^{-}} c & =c
\end{aligned}
$$

limit approches to $\pm \infty$

$$
\lim _{x \rightarrow \pm \infty} c=c
$$

2- Polinomal function $f(x)=a_{n} x^{n+}+a_{n-1}-x^{n-1}+\ldots+a_{o}$

 limit approchis to point a$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Direct compensation
-One side limit

$$
\begin{aligned}
\lim _{x \rightarrow a^{+}} f(x) & =f(a) \\
\lim _{x \rightarrow a^{-}} f(x) & =f(a)
\end{aligned}
$$

Direct compensation
-limit x approches to $\pm \infty$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} x^{n} & =\infty, n \text { even } \\
\lim _{x \rightarrow-\infty} x^{n} & =\infty, n \text { even } \\
\lim _{x \rightarrow+\infty} x^{n} & =\infty, n \text { odd } \\
\lim _{x \rightarrow-\infty} x^{n} & =-\infty, n \text { odd. }
\end{aligned}
$$

$$
\lim _{x \rightarrow \pm \infty} a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{\circ}=\lim _{x \rightarrow \pm \infty} a_{n} x^{n}
$$

- limit x approches to a point a

$$
\lim _{x \rightarrow a} f(x)=f(a)=\frac{p(a)}{q(a)}
$$

Direct compensation
-One side limit

$$
\begin{aligned}
\lim _{x \rightarrow a^{+}} f(x) & =f(a)=\frac{p(a)}{q(a)} \\
\lim _{x \rightarrow a^{-}} f(x) & =f(a)=\frac{p(a)}{q(a)}
\end{aligned}
$$

Direct compensation
-limit x approches to $\pm \infty$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{1}{x} & =\infty \\
\lim _{x \rightarrow-\infty} \frac{1}{x} & =-\infty \\
\lim _{x \rightarrow+\infty} \frac{1}{x^{2}} & =\infty \\
\lim _{x \rightarrow-\infty} \frac{1}{x^{2}} & =\infty \\
\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}} & =+\infty, n \text { is an even } \\
\lim _{x \rightarrow+\infty} \frac{1}{x^{n}} & =+\infty, n \text { is an odd } \\
\lim _{x \rightarrow-\infty} \frac{1}{x^{n}} & =-\infty, n \text { is an odd }
\end{aligned}
$$

if $n=m$ (degree of $p(x)=$ degree of $g(x)) \Rightarrow$

$$
\lim _{x \rightarrow \pm \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{\circ}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+a_{\circ}}=\frac{a_{n}}{b_{n}}
$$

If $n<m$ (degree of $p(x)<$ degree of $g(x)) \Rightarrow$

$$
\lim _{x \rightarrow \pm \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{\circ}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+a_{\circ}}=0
$$

If $n<m$ (degree of $p(x)>$ degree of $g(x)) \Rightarrow$

$$
\lim _{x \rightarrow \pm \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{\circ}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+a_{\circ}}= \pm \infty
$$

to know it is $+\infty$ or $-\infty$ test the signe of $\frac{a_{n} x^{n}}{b_{m} x^{m}}$

4- root function $\sqrt[2]{f(x)}$

If n is odd number

- limit x approches to a point a

$$
\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{f(a)}
$$

Direct compensation
-One side limit

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} \sqrt[n]{f(x)}=\sqrt[n]{f(a)} \\
& \lim _{x \rightarrow a^{-}} \sqrt[n]{f(x)}=\sqrt[n]{f(a)}
\end{aligned}
$$

Direct compensation
If n is even number

- limit x approches to a point a

$$
\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{f(a)}
$$

Direct compensation
if under the root positive \Rightarrow the solution is end and have value
if under the root 0 or nigative \Rightarrow the solution is D.N.E. (dose not exist)
-One side limit

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} \sqrt[n]{f(x)}=\sqrt[n]{f(a)} \\
& \lim _{x \rightarrow a^{-}} \sqrt[n]{f(x)}=\sqrt[n]{f(a)}
\end{aligned}
$$

Direct compensation
if under the root positive \Rightarrow the solution is end and have value
if under the root $0 \Rightarrow$ find the domain

$$
\text { if the graph from the right } \Rightarrow \lim _{x \rightarrow a^{+}} \sqrt[n]{f(x)}=
$$

0 and $\lim _{x \rightarrow a^{-}} \sqrt[n]{f(x)}$ D.N.E.

$$
\text { if the graph from the left } \Rightarrow \lim _{x \rightarrow a^{+}} \sqrt[n]{f(x)}=\text { D.N.E. }
$$

and $\lim _{x \rightarrow a^{-}} \sqrt[n]{f(x)}=0$
if under the root nigative \Rightarrow the solution is D.N.E. (dose not exist)
-limit x approches to $\pm \infty$
divaided by $x^{\text {largest }}$
if $x \rightarrow+\infty$ then the result is positive
if $x \rightarrow-\infty$ then the result is nigative

5- Exponitial function $f_{f(x)=a^{z}}$ where

$a>1$ OI $f(x)=e^{x}$
Note that:

$$
\begin{aligned}
a^{0} & =1 \\
a^{\infty} & =\infty \\
a^{-\infty} & =0
\end{aligned}
$$

simmilar,

$$
\begin{aligned}
e^{0} & =1 \\
e^{\infty} & =\infty \\
e^{-\infty} & =0
\end{aligned}
$$

limit approchis to point a

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Direct compensation
-One side limit

$$
\begin{aligned}
\lim _{x \rightarrow a^{+}} f(x) & =f(a) \\
\lim _{x \rightarrow a^{-}} f(x) & =f(a)
\end{aligned}
$$

Direct compensation
-limit x approches to $\pm \infty$
Direct compensation

6- logarithmic finction $f(x)=\log _{\alpha} x$ or

 $f(x)=\ln x$Note:

$$
\begin{aligned}
\ln 1 & =0 \\
\ln \infty & =\infty \\
\ln -\infty & =\text { D.N.E. }
\end{aligned}
$$

limit approchis to point a

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Direct compensation
if inside the lograthmic function positive \Rightarrow the solution is end and have value
if under the root 0 or nigative \Rightarrow the solution is D.N.E. (dose not exist)
-One side limit

$$
\begin{aligned}
\lim _{x \rightarrow a^{+}} f(x) & =f(a) \\
\lim _{x \rightarrow a^{-}} f(x) & =f(a)
\end{aligned}
$$

Direct compensation
if inside the lograthmic function positive \Rightarrow the solution is end and have value
if under the root $0 \Rightarrow$ find the domain
if the graph from the right $\Rightarrow \lim _{x \rightarrow a^{+}} f(x)=$ $\ln 0=-\infty$ or $\lim _{x \rightarrow a^{+}} f(x)=\log 0=-\infty$
and $\lim _{x \rightarrow a^{-}} f(x)$ D.N.E.
if the graph from the left $\Rightarrow \lim _{x \rightarrow a^{+}} f(x)$ D.N.E.
and $\lim _{x \rightarrow a^{-}} f(x)=$
$\ln 0=-\infty$ or $\lim _{x \rightarrow a^{-}} f(x)=\log 0=-\infty$
if under the root nigative \Rightarrow the solution is D.N.E. (dose not exist)
-limit x approches to $+\infty$
Direct compensation

7-the gretest integer function $f(x)=[[x]]$

limit approchis to point a
If a is an integer number

$$
\lim _{x \rightarrow a} f(x)=\text { D.N.E. }
$$

If a is not integer

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Direct compensation

-One side limit

If a is an integer number

$$
\begin{aligned}
\lim _{x \rightarrow a^{+}} f(x) & =a \\
\lim _{x \rightarrow a^{-}} f(x) & =a-1
\end{aligned}
$$

If a is not integer

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Direct compensation

Continouty

$f(x)$ is continous at a if and only if satisfy
1- $f(a)$ defined
2- $\lim _{x \rightarrow a} f(x)$ exist
3- $f(a)=\lim _{x \rightarrow a} f(x)$
$f(x)$ is continous from right of a if and only if satisfy

1- $f(a)$ defined
2- $\lim _{x \rightarrow a^{+}} f(x)$ exist
3- $f(a)=\lim _{x \rightarrow a^{+}} f(x)$
${ }^{f(x)}$ is continous from left of a if and only if satisfy

1- $f(a)$ defined
2- $\lim _{x \rightarrow a^{-}} f(x)$ exist
3- $f(a)=\lim _{x \rightarrow a^{-}} f(x)$
all function are continous on its domaine
[algebric, polynomial, rational, root, exponitiol, logarithmic and trigonmetric function]

Vertical Asympotitic:

Definition:
we say $x=L$ is vertical asympotitic if and only is satisfy the follwing:

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

or

$$
\lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

To find the vertical asympotitic : 1- POLINOMIAL FUNCTION
Has no vertical asympototic
2- RATIONAL FUNCTION $f(x)=\frac{p(x)}{q(x)}$
after you make simple take $q(x)=0$ the solution is vertical asympototic
3- ROOT FUNCTION $f(x)=\sqrt[n]{g(x)}$
if n odd:

Has no vertical asympototic
if n even:
the vertical asympototic is the solution of $g(x)=0$
4- EXPONITIAL FUNCTION
Has no vertical asympototic
5- LOGARITHMIC FUNCTION $f(x)=\log (g(x))$ or $f(x)=$ $\ln (g(x))$
the vertical asympototic is the solution of $g(x)=0$

The Horizntal Asympototic:

Definition:
we say $y=L$ is horizantal asympotitic if and only is satisfy the follwing:

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

or

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

