Workshop Solutions to Section 5.3

1) $\lim _{x \rightarrow 0} \frac{x^{3}+5 x^{2}}{x^{2}}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:
We use the I'Hopital's Rule, we have
$\lim _{x \rightarrow 0} \frac{x^{3}+5 x^{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(x^{3}+5 x^{2}\right)}{\frac{d}{d x}\left(x^{2}\right)}=\lim _{x \rightarrow 0} \frac{3 x^{2}+10 x}{2 x}=\frac{0}{0}$
We obtained an indeterminate form; we can also use the
I'Hopital's Rule once more.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{3 x^{2}+10 x}{2 x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(3 x^{2}+10 x\right)}{\frac{d}{d x}(2 x)}=\lim _{x \rightarrow 0} \frac{6 x+10}{2} \\
& =\frac{6(0)+10}{2}=\frac{10}{2}=5
\end{aligned}
$$

Another solution:

$\lim _{x \rightarrow 0} \frac{x^{3}+5 x^{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}(x+5)}{x^{2}}=\lim _{x \rightarrow 0}(x+5)=0+5=5$
3) $\lim _{x \rightarrow 1} \frac{x-1}{\ln x}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the I'Hopital's Rule, we have

$$
\lim _{x \rightarrow 1} \frac{x-1}{\ln x}=\lim _{x \rightarrow 1} \frac{\frac{d}{d x}(x-1)}{\frac{d}{d x}(\ln x)}=\lim _{x \rightarrow 1} \frac{1}{\frac{1}{x}}=\lim _{x \rightarrow 1} x=1
$$

5) $\lim _{x \rightarrow-6} \frac{x+6}{x^{2}-36}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the I'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow-6} \frac{x+6}{x^{2}-36} & =\lim _{x \rightarrow-6} \frac{\frac{d}{d x}(x+6)}{\frac{d}{d x}\left(x^{2}-36\right)}=\lim _{x \rightarrow-6} \frac{1}{2 x}=\frac{1}{2(-6)} \\
& =-\frac{1}{12}
\end{aligned}
$$

Another solution:

$$
\begin{aligned}
\lim _{x \rightarrow-6} \frac{x+6}{x^{2}-36} & =\lim _{x \rightarrow-6} \frac{x+6}{(x-6)(x+6)} \\
& =\lim _{x \rightarrow-6} \frac{1}{x-6}=\frac{1}{(-6)-6}=-\frac{1}{12}
\end{aligned}
$$

2) $\lim _{x \rightarrow 6} \frac{x-6}{x^{2}-36}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\lim _{x \rightarrow 6} \frac{x-6}{x^{2}-36}=\lim _{x \rightarrow 6} \frac{\frac{d}{d x}(x-6)}{\frac{d}{d x}\left(x^{2}-36\right)}=\lim _{x \rightarrow 6} \frac{1}{2 x}=\frac{1}{2(6)}=\frac{1}{12}
$$

Another solution:

$$
\begin{aligned}
\lim _{x \rightarrow 6} \frac{x-6}{x^{2}-36} & =\lim _{x \rightarrow 6} \frac{x-6}{(x-6)(x+6)} \\
& =\lim _{x \rightarrow 6} \frac{1}{x+6}=\frac{1}{(6)+6}=\frac{1}{12}
\end{aligned}
$$

4) $\lim _{x \rightarrow \infty} \frac{\ln x}{e^{x}}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)\left(\lim _{x \rightarrow \infty} \ln x=\infty\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{e^{x}} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{e^{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x e^{x}}=\frac{1}{\infty, \infty}=\frac{1}{\infty}=0
\end{aligned}
$$

6) $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the I'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3} & =\lim _{x \rightarrow 3} \frac{\frac{d}{d x}\left(x^{3}-27\right)}{\frac{d}{d x}(x-3)}=\lim _{x \rightarrow 3} \frac{3 x^{2}}{1}=\lim _{x \rightarrow 3}\left(3 x^{2}\right) \\
& =3(3)^{2}=27
\end{aligned}
$$

Another solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{x-3} \\
& =\lim _{x \rightarrow 3}\left(x^{2}+3 x+9\right)=(3)^{2}+3(3)+9=27
\end{aligned}
$$

7) $\lim _{x \rightarrow \infty} \frac{x^{2}}{2 e^{x}}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)\left(\lim _{x \rightarrow \infty} e^{x}=\infty\right)$

Solution:

We use the l'Hopital's Rule, we have
$\lim _{x \rightarrow \infty} \frac{x^{2}}{2 e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(x^{2}\right)}{\frac{d}{d x}\left(2 e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{2 x}{2 e^{x}}=\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\frac{\infty}{\infty}$
We obtained an indeterminate form; we can also use the
I'Hopital's Rule once more.
$\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(x)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=\frac{1}{\infty}=0$
9) $\lim _{x \rightarrow 0^{+}} \frac{x-\tan x}{x \tan x}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{x-\tan x}{x \tan x} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(x-\tan x)}{\frac{d}{d x}(x \tan x)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1-\sec ^{2} x}{(1)(\tan x)+(x)\left(\sec ^{2} x\right)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1-\sec ^{2} x}{\tan x+x \sec ^{2} x} \\
& =\frac{1-\sec ^{2}(0)}{\tan (0)+(0) \sec ^{2}(0)}=\frac{0}{0}
\end{aligned}
$$

We obtained an indeterminate form; we can also use the
I'Hopital's Rule again.
$\lim _{x \rightarrow 0^{+}} \frac{1-\sec ^{2} x}{\tan x+x \sec ^{2} x}$
$=\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}\left(1-\sec ^{2} x\right)}{\frac{d}{d x}\left(\tan x+x \sec ^{2} x\right)}$
$=\lim _{x \rightarrow 0^{+}} \frac{-2 \sec x \cdot \sec x \cdot \tan x}{\sec ^{2} x+\left[(1)\left(\sec ^{2} x\right)+(x)(2 \sec x \cdot \sec x \cdot \tan x)\right]}$
$=\lim _{x \rightarrow 0^{+}} \frac{-2 \sec ^{2} x \tan x}{\sec ^{2} x+\sec ^{2} x+2 \sec ^{2} x \tan x}$
$=\lim _{x \rightarrow 0^{+}} \frac{-2 \sec ^{2} x \tan x}{2 \sec ^{2} x+2 \sec ^{2} x \tan x}$
$=\lim _{x \rightarrow 0^{+}} \frac{2 \sec ^{2} x(-\tan x)}{2 \sec ^{2} x(1+\tan x)}=\lim _{x \rightarrow 0^{+}} \frac{-\tan x}{1+\tan x}$
$=\frac{-\tan (0)}{1+\tan (0)}=\frac{0}{1+0}=0$
8) $\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8} & =\lim _{x \rightarrow-2} \frac{\frac{d}{d x}(x+2)}{\frac{d}{d x}\left(x^{3}+8\right)}=\lim _{x \rightarrow-2} \frac{1}{3 x^{2}}=\frac{1}{3(-2)^{2}} \\
& =\frac{1}{12}
\end{aligned}
$$

Another solution:

$\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}=\lim _{x \rightarrow-2} \frac{x+2}{(x+2)\left(x^{2}-2 x+4\right)}$
$=\lim _{x \rightarrow-2} \frac{1}{x^{2}-2 x+4}=\frac{1}{(-2)^{2}-2(-2)+4}=\frac{1}{4+4+4}=\frac{1}{12}$
10) $\lim _{x \rightarrow 1} \frac{\ln x}{\sin (\pi x)}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\ln x}{\sin (\pi x)} & =\lim _{x \rightarrow 1} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}(\sin (\pi x))}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\pi \cos (\pi x)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\pi x \cos (\pi x)}=\frac{1}{\pi(1) \cos (\pi)}=\frac{1}{\pi \cdot(-1)} \\
& =-\frac{1}{\pi}
\end{aligned}
$$

11) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(1-\cos x)}{\frac{d}{d x}\left(x^{2}\right)}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{0}{0}
$$

We obtained an indeterminate form; we can also use the I'Hopital's Rule once more.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin x)}{\frac{d}{d x}(2 x)}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{\cos (0)}{2}=\frac{1}{2}
$$

12) $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{\sin x}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:
We use the I'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{\sin x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(\sin ^{-1} x\right)}{\frac{d}{d x}(\sin x)}=\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{1-x^{2}}}}{\cos x} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{1-x^{2}} \cos x}=\frac{1}{\sqrt{1-(0)^{2}} \cos (0)} \\
& =\frac{1}{(1) \cdot(1)}=1
\end{aligned}
$$

13) $\lim _{x \rightarrow \infty} \frac{3^{x}}{6^{x}}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)$
$\left(\lim _{x \rightarrow \infty} a^{x}=\infty, a>1, \lim _{x \rightarrow \infty} a^{x}=0,0<a<1\right)$

Solution:

We use the l'Hopital's Rule, we have
$\lim _{x \rightarrow \infty} \frac{3^{x}}{6^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(3^{x}\right)}{\frac{d}{d x}\left(6^{x}\right)}=\lim _{x \rightarrow \infty} \frac{3^{x} \cdot \ln 3}{6^{x} \cdot \ln 6}=\frac{\ln 3}{\ln 6} \lim _{x \rightarrow \infty} \frac{3^{x}}{6^{x}}=\frac{\infty}{\infty}$
Note that we get back to the same limit. We use the following way
$\lim _{x \rightarrow \infty} \frac{3^{x}}{6^{x}}=\lim _{x \rightarrow \infty}\left(\frac{3}{6}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{1}{2}\right)^{x}=0$
15) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)\left(\lim _{x \rightarrow \infty} e^{x}=\infty\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(e^{x}\right)}{\frac{d}{d x}\left(x^{2}\right)}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\frac{\infty}{\infty}
$$

We obtained an indeterminate form; we can also use the I'Hopital's Rule once more.

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(e^{x}\right)}{\frac{d}{d x}(2 x)}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\frac{e^{\infty}}{2}=\infty
$$

17) $\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}-8 x+15}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}-8 x+15} & =\lim _{x \rightarrow \rightarrow} \frac{\frac{d}{d x}\left(x^{2}+4 x-21\right)}{\frac{d}{d x}\left(x^{2}-8 x+15\right)} \\
& =\lim _{x \rightarrow 3} \frac{2 x+4}{2 x-8}=\frac{2(3)+4}{2(3)-8}=\frac{10}{-2}=-5
\end{aligned}
$$

Another solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}-8 x+15}=\lim _{x \rightarrow 3} \frac{(x+7)(x-3)}{(x-3)(x-5)} \\
=\lim _{x \rightarrow 3} \frac{x+7}{x-5}=\frac{(3)+7}{(3)-5}=\frac{10}{-2}=-5
\end{aligned}
$$

18) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)\left(\lim _{x \rightarrow \infty} \ln x=\infty\right) \quad$ 19) $\lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{x-2}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:
We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}(\sqrt[3]{x})}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}\left(x^{\frac{1}{3}}\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{3} x^{-\frac{2}{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{3}{x \cdot x^{-\frac{2}{3}}}=\lim _{x \rightarrow \infty} \frac{3}{x^{\frac{1}{3}}}=\lim _{x \rightarrow \infty} \frac{3}{\sqrt[3]{x}}=\frac{3}{\infty}=0
\end{aligned}
$$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt[3]{x+6}-2}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(\sqrt[3]{x+6}-2)}{\frac{d}{d x}(x-2)} \\
& \quad=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left((x+6)^{\frac{1}{3}}-2\right)}{\frac{d}{d x}(x-2)}=\lim _{x \rightarrow 2} \frac{\frac{1}{3}(x+6)^{-\frac{2}{3}}}{1} \\
& \quad=\lim _{x \rightarrow 2} \frac{1}{3(x+6)^{\frac{2}{3}}}=\lim _{x \rightarrow 2} \frac{1}{3 \sqrt[3]{(x+6)^{2}}}=\frac{1}{3 \sqrt[3]{(2+6)^{2}}} \\
& \quad=\frac{1}{3 \sqrt[3]{64}}=\frac{1}{3(4)}=\frac{1}{12} \\
& \text { 21) } \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}+x}=\left(\text { of the form } \frac{0}{0}\right)
\end{aligned}
$$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}+x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(1-\cos x)}{\frac{d}{d x}\left(x^{2}+x\right)}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x+1} \\
& =\frac{0}{2(0)+1}=0
\end{aligned}
$$

23) $\lim _{x \rightarrow 3} \frac{1-\sqrt{x-2}}{2-\sqrt{x+1}}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the I'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{2-\sqrt{6-x}} & =\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(x-2)}{\frac{d}{d x}(2-\sqrt{6-x})}=\lim _{x \rightarrow 2} \frac{1}{-\frac{-1}{2 \sqrt{6-x}}} \\
& =\lim _{x \rightarrow 2}(2 \sqrt{6-x})=2 \sqrt{6-(2)}=2(2) \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{1-\sqrt{x-2}}{2-\sqrt{x+1}} & =\lim _{x \rightarrow 3} \frac{\frac{d}{d x}(1-\sqrt{x-2})}{\frac{d}{d x}(2-\sqrt{x+1})}=\lim _{x \rightarrow 3} \frac{-\frac{1}{2 \sqrt{x-2}}}{-\frac{1}{2 \sqrt{x+1}}} \\
& =\lim _{x \rightarrow 3} \frac{2 \sqrt{x+1}}{2 \sqrt{x-2}}=\lim _{x \rightarrow 3} \frac{\sqrt{x+1}}{\sqrt{x-2}}=\frac{\sqrt{(3)+1}}{\sqrt{(3)-2}} \\
& =\frac{2}{1}=2
\end{aligned}
$$

24) $\lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}+x-20}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}+x-20} & =\lim _{x \rightarrow 4} \frac{\frac{d}{d x}\left(x^{2}-6 x+8\right)}{\frac{d}{d x}\left(x^{2}+x-20\right)} \\
& =\lim _{x \rightarrow 4} \frac{2 x-6}{2 x+1}=\frac{2(4)-6}{2(4)+1}=\frac{2}{9}
\end{aligned}
$$

Another solution:

$$
\begin{array}{r}
\lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}+x-20}=\lim _{x \rightarrow 4} \frac{(x-2)(x-4)}{(x-4)(x+5)} \\
=\lim _{x \rightarrow 4} \frac{x-2}{x+5}=\frac{(4)-2}{(4)+5}=\frac{2}{9}
\end{array}
$$

26) $\lim _{x \rightarrow-2} \frac{4 x^{2}+6 x-4}{2 x^{2}-8}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
& \lim _{x \rightarrow-2} \frac{4 x^{2}+6 x-4}{2 x^{2}-8}=\lim _{x \rightarrow-2} \frac{\frac{d}{d x}\left(4 x^{2}+6 x-4\right)}{\frac{d}{d x}\left(2 x^{2}-8\right)} \\
& \quad=\lim _{x \rightarrow-2} \frac{8 x+6}{4 x}=\frac{8(-2)+6}{4(-2)}=\frac{-10}{-8}=\frac{5}{4}
\end{aligned}
$$

Another solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-2} \frac{4 x^{2}+6 x-4}{2 x^{2}-8}=\lim _{x \rightarrow-2} \frac{2\left(2 x^{2}+3 x-2\right)}{2\left(x^{2}-4\right)} \\
& =\lim _{x \rightarrow-2} \frac{2 x^{2}+3 x-2}{x^{2}-4}=\lim _{x \rightarrow-2} \frac{(2 x-1)(x+2)}{(x-2)(x+2)}=\lim _{x \rightarrow-2} \frac{2 x-1}{x-2} \\
& \quad=\frac{2(-2)-1}{(-2)-2}=\frac{-5}{-4}=\frac{5}{4}
\end{aligned}
$$

25) $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-x-6}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-x-6} & =\lim _{x \rightarrow-2} \frac{\frac{d}{d x}\left(x^{3}+8\right)}{\frac{d}{d x}\left(x^{2}-x-6\right)} \\
& =\lim _{x \rightarrow-2} \frac{3 x^{2}}{2 x-1}=\frac{3(-2)^{2}}{2(-2)-1}=\frac{12}{-5}=-\frac{12}{5}
\end{aligned}
$$

Another solution:
$\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-x-6}=\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{(x-3)(x+2)}$
$=\lim _{x \rightarrow-2} \frac{x^{2}-2 x+4}{x-3}=\frac{(-2)^{2}-2(-2)+4}{(-2)-3}=\frac{4+4+4}{-5}=-\frac{12}{5}$
27) $\lim _{x \rightarrow 1} \frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the I'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1} & =\lim _{x \rightarrow 1} \frac{\frac{d}{d x}(\sqrt{2 x+2}-2)}{\frac{d}{d x}(\sqrt{3 x-2}-1)} \\
& =\lim _{x \rightarrow 1} \frac{\frac{2}{2 \sqrt{2 x+2}}}{\frac{3}{2 \sqrt{3 x-2}}}=\lim _{x \rightarrow 1} \frac{2 \sqrt{3 x-2}}{3 \sqrt{2 x+2}} \\
& =\frac{2 \sqrt{3(1)-2}}{3 \sqrt{2(1)+2}}=\frac{2(1)}{3(2)}=\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

28) $\lim _{x \rightarrow-1} \frac{x^{2}-5 x-6}{x+1}=\left(\begin{array}{l}\text { of the form } \frac{0}{0}\end{array}\right)$	29) $\lim _{x \rightarrow 0} \frac{(x+3)^{-1}-3^{-1}}{x}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:
We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x^{2}-5 x-6}{x+1} & =\lim _{x \rightarrow-1} \frac{\frac{d}{d x}\left(x^{2}-5 x-6\right)}{\frac{d}{d x}(x+1)} \\
& =\lim _{x \rightarrow-1} \frac{2 x-5}{1}=2(-1)-5=-7
\end{aligned}
$$

30) $\lim _{x \rightarrow \infty} \frac{4 x^{5}+6 x-4}{2 x^{5}-8}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)$

Solution:

We use the I'Hopital's Rule, we have

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{4 x^{5}+6 x-4}{2 x^{5}-8}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(4 x^{5}+6 x-4\right)}{\frac{d}{d x}\left(2 x^{5}-8\right)} \\
&=\lim _{x \rightarrow \infty} \frac{20 x^{4}+6}{10 x^{4}}=\lim _{x \rightarrow \infty}\left(\frac{20 x^{4}}{10 x^{4}}+\frac{6}{10 x^{4}}\right) \\
&=\lim _{x \rightarrow \infty}\left(2+\frac{6}{10 x^{4}}\right)=2+\frac{6}{\infty}=2+0=2
\end{aligned}
$$

32) $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=\left(\right.$ of the form $\left.\frac{-\infty}{\infty}\right)\left(\lim _{x \rightarrow 0^{+}} \ln x=-\infty\right)$

Solution:

We use the I'Hopital's Rule, we have
$\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}\left(x^{-1}\right)}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-x^{-2}}$
$=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-x}=\lim _{x \rightarrow 0^{+}}(-x)=0$
34) $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)\left(\lim _{x \rightarrow \infty} \ln x=\infty\right)$

Solution:
We use the I'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} & =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}(x)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x}=\frac{1}{\infty}=0
\end{aligned}
$$

35) $\lim _{x \rightarrow 1^{+}} \frac{1-x+x \ln x}{(x-1) \ln x}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:
We use the l'Hopital's Rule, we have
$\lim _{x \rightarrow 1^{+}} \frac{1-x+x \ln x}{(x-1) \ln x}=\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(1-x+x \ln x)}{\frac{d}{d x}((x-1) \ln x)}$
$=\lim _{x \rightarrow 1^{+}} \frac{-1+\left(\ln x+x \cdot \frac{1}{x}\right)}{\ln x+(x-1) \cdot \frac{1}{x}}=\lim _{x \rightarrow 1^{+}} \frac{-1+\ln x+1}{\ln x+1-\frac{1}{x}}$
$=\lim _{x \rightarrow 1^{+}} \frac{\ln x}{\frac{x \ln x+x-1}{x}}=\lim _{x \rightarrow 1^{+}} \frac{x \ln x}{x \ln x+x-1}=\frac{0}{0}$
We obtained an indeterminate form; we can also use the I'Hopital's Rule again.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{x \ln x}{x \ln x+x-1}=\lim _{x \rightarrow 1^{+}} \frac{\frac{d}{d x}(x \ln x)}{\frac{d}{d x}(x \ln x+x-1)} \\
=\lim _{x \rightarrow 1^{+}} \frac{\ln x+x \cdot \frac{1}{x}}{\left(\ln x+x \cdot \frac{1}{x}\right)+1} \\
\quad=\lim _{x \rightarrow 1^{+}} \frac{\ln x+1}{(\ln x+1)+1} \\
=\lim _{x \rightarrow 1^{+}} \frac{\ln x+1}{\ln x+2}=\frac{\ln (1)+1}{\ln (1)+2}=\frac{0+1}{0+2}=\frac{1}{2}
\end{aligned}
$$

38) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:
We use the l'Hopital's Rule, we have
$\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(\tan ^{-1} x\right)}{\frac{d}{d x}(x)}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x^{2}}}{1}$

$$
=\lim _{x \rightarrow 0} \frac{1}{1+x^{2}}=\frac{1}{1+(0)^{2}}=1
$$

36) $\lim _{x \rightarrow \infty} \frac{3^{x}}{2^{x}}=\left(\right.$ of the form $\left.\frac{\infty}{\infty}\right)$
$\left(\lim _{x \rightarrow \infty} a^{x}=\infty, a>1, \lim _{x \rightarrow \infty} a^{x}=0,0<a<1\right)$
Solution:
We use the l'Hopital's Rule, we have
$\lim _{x \rightarrow \infty} \frac{3^{x}}{2^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(3^{x}\right)}{\frac{d}{d x}\left(2^{x}\right)}=\lim _{x \rightarrow \infty} \frac{3^{x} \cdot \ln 3}{2^{x} \cdot \ln 2}=\frac{\ln 3}{\ln 2} \lim _{x \rightarrow \infty} \frac{3^{x}}{2^{x}}=\frac{\infty}{\infty}$
Note that we get back to the same limit. We use the following way

$$
\lim _{x \rightarrow \infty} \frac{3^{x}}{2^{x}}=\lim _{x \rightarrow \infty}\left(\frac{3}{2}\right)^{x}=\infty
$$

37) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{3}}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1-x\right)}{\frac{d}{d x}\left(x^{3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-1}{3 x^{2}}=\frac{0}{0}
\end{aligned}
$$

We obtained an indeterminate form; we can also use the I'Hopital's Rule again.
$\lim _{x \rightarrow 0} \frac{e^{x}-1}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{x}-1\right)}{\frac{d}{d x}\left(3 x^{2}\right)}=\lim _{x \rightarrow 0} \frac{e^{x}}{6 x}=\frac{e^{0}}{6(0)}=\frac{1}{0}=\infty$
39) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}-x}{x \sqrt{x}}=\left(\right.$ of the form $\left.\frac{0}{0}\right)$

Solution:

We use the l'Hopital's Rule, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}-x}{x \sqrt{x}}= & \lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\sqrt{x}-x)}{\frac{d}{d x}(x \sqrt{x})}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{2 \sqrt{x}}-1}{\sqrt{x}+x \cdot \frac{1}{2 \sqrt{x}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1-2 \sqrt{x}}{2 \sqrt{x}}}{\frac{2 x+x}{2 \sqrt{x}}}=\lim _{x \rightarrow 0^{+}} \frac{1-2 \sqrt{x}}{3 x} \\
& =\frac{1-2 \sqrt{(0)}}{3(0)}=\frac{1}{0}=\infty
\end{aligned}
$$

