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Oscillating chemical reactions on a wineglass?

Overview A salt solution is pumped through a series of tanks. We’ll use the balance law to
model the rate of change of the amount of salt in each tank:{

Net rate of change of
amount of salt in tank

}
=

{
Rate into

tank

}
−

{
Rate out of

tank

}

If we know the initial amount of salt and the inflow and outflow rates of the
solution in each tank, then we can set up an IVP that models the physical system.
We’ll use this “balance law” approach to model the pollution level in a lake; the
flow of a medication; the movement of lead among the blood, tissues, and bones
of a body; and an autocatalytic chemical reaction.

Key words Compartment model; balance law; lake pollution; pharmacokinetics; chemical re-
actions; chemical law of mass action; autocatalysis; Hopf bifurcation

See also Chapter 9 for more compartment models, and Chapter 6 for linear systems and
flow through interconnected tanks.
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◆ Lake Pollution

Modeling how pollutants move through an environment is important in the
prediction of harmful effects, as well as the formulation of environmental
policies and regulations. The simplest situation has a single source of pollu-
tion that contaminates a well-defined habitat, such as a lake. To build a model
of this system, we picture the lake as a compartment; pollutants in the water
flow into and out of the compartment. The rates of flow determine the amount
of build-up or dissipation of pollutants. It is useful to represent this conceptual
model with a compartment diagram, where a box represents a compartment
and an arrow represents a flow rate. Here is a compartment diagram for a
simple model of lake pollution:

L(t)� �
rin rout

The amount of pollutant in the lake at time t is L(t), while rin is the rate
of flow of pollutant into the lake and rout is the rate of flow of pollutant out
of the lake. To obtain the equation for the rate of change of the amount of
pollutant in the lake, we apply the balance law: the net rate of change of the
amount of a substance in a compartment is the difference between the rate of
flow into the compartment and the rate of flow out of the compartment:

dL
dt

= rin − rout

This ODE is sufficient when we know the rates rin and rout, but these rates
are usually not constant: they depend on the rate of flow of water into the
lake, the rate of flow of water out of the lake, and the pollutant concentration
in the inflowing water. Let sin and sout represent the volume rates of flow of
water into and out of the lake, V the volume of water in the lake, and pin the☞ You can get the volume

V(t) of water in the lake by
solving the IVP V′ = sin − sout ,
V(0) = V0.

concentration of pollutant in the incoming water. Now we can calculate the
rates shown in the compartment diagram:

rin = pinsin, rout = L
V

sout

The ODE for the amount of pollutant in the lake is now

dL
dt

= pinsin − L
V

sout (1)

To obtain an IVP, we need to specify L(0), the initial amount of pollutant in☞ So we need to know V(0),
L(0), pin , sin , and sout in order to
determine L(t) and V(t).

the lake. The solution to this IVP will reveal how the level of pollution varies
in time. Figure 8.1 shows a solution to the ODE (1) for the pollution level in
the lake if the inflow is contaminated for the first six months of every year and
is clean for the last six months (so pin(t) is a square wave function).

☞ Take a look as Screen 1.4
in Module 8 for on-off inflow
concentrations.
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Figure 8.1: Pollutant level in a lake (on-off inflow rates).

✓ “Check” your understanding by finding the volume V (t) of water in the
lake at time t if V (0) = 10, sin = 3, and sout = 1, 3, or 5 (all quantities in
suitable units). Does the lake dry up, overflow, or stay at a constant volume?

◆ Allergy Relief

Medications that relieve the symptoms of hay fever often contain an antihis-
tamine and a decongestant bundled into a single capsule. The capsule dis-
solves in the gastrointestinal (or GI) tract and the contents move through the
intestinal walls and into the bloodstream at rates proportional to the amounts
of each medication in the tract. The kidneys clear medications from the blood-
stream at rates proportional to the amounts in the blood.

Here is a compartment diagram for this system:

GI tract
x(t)

Blood
y(t)

� � �
I(t) ax(t) by(t)

The symbols in this diagram have the following meanings:

I(t): The rate at which the dissolving capsule releases a medication (for
example, a decongestant) into the GI tract

x(t): The amount of medication in the GI tract at time t
ax(t): The clearance rate of the medication from the GI tract, which equals

the entrance rate into the blood (a is a positive rate constant)
y(t): The amount of medication in the blood at time t

by(t): The clearance rate of the medication from the blood (b is a positive
rate constant)
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Applying the balance law to each compartment, we have a system of first-
order linear ODEs:

x′ = I − ax

y′ = ax − by
(2)

If you know I(t), the rate constants a and b, and the initial amounts x(0) and
y(0) of medication in the GI tract and the bloodstream, you can use ODE☞ Medication levels in the

blood (easily measured) indicate
the levels in the tissues (hard to
measure), where the medication
does its good work.

Architect to track the flow of the medication through the body. From a phar-
macological point of view, the goal is to get the medication levels in the blood
into the effective (but safe) zone as quickly as possible and then to keep them
there until the patient recovers.

There are two kinds of medication-release mechanisms: continuous and
on-off. In the first kind, the medication is released continuously at an approx-
imately constant rate, so I(t) is a positive constant. In the on-off case, each
capsule releases the medication at a constant rate over a brief span of time and
then the process repeats when the next capsule is taken. In this case we model
I(t) by a square wave:

I(t) = A SqWave(t, Tper, Ton)

which has amplitude A, period Tper, and “on” time Ton. For example, if the☞ Screen 2.4 in Module 8
shows what happens if
a = 0.6931 hr−1, Ton = 1 hr, and
b and A are adjustable
parameters.

capsule releases 6 units of medication over a half hour and the dosage is one
capsule every six hours, then

I(t) = 12 SqWave(t, 6, 0.5) (3)

Note that 12 (units/hr)×0.5 (hr) = 6 units.
Compartment models described by equations such as (2) are called cas-

cades. They can be solved explicitly, one equation at a time, by solving the
first ODE, inserting the solution into the second ODE, solving it, and so on
down the cascade. Although this approach theoretically yields explicit solu-
tion formulas, in practice the formulas farther along in the cascade of solutions
get so complicated that they are difficult to interpret. That’s one reason why
it pays to use a numerical solver, like the ODE Architect. Figure 8.2 shows☞ ODE Architect to the

rescue! how the amounts of decongestant in the body change when administered by
the on-off method [equation (3)].

✓ By inspecting Figure 8.2 decide which of the clearance coefficients a or
b is larger.

References Borrelli, R.L., and Coleman, C.S., Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Spitznagel, E., “Two-Compartment Phamacokinetic Models” in C.ODE.E,
Fall, 1992, pp. 2–4, http://www.math.hmc.edu/codee
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Figure 8.2: Decongestant levels in the GI tract and in the blood.

◆ Lead in the Body

Lead gets into the digestive and respiratory systems of the body via contami-
nated food, air, and water, as well as lead-based paint, glaze, and crystalware.☞ In ancient times lead was

used to sweeten wine. Lead moves into the bloodstream, which then distributes it to the tissues and
bones. From those two body compartments it leaks back into the blood. Lead
does the most damage to the brain and nervous system (treated here as tis-
sues). Hair, nails, and perspiration help to clear lead from the tissues, and the
kidneys clear lead from the blood. The rate at which lead leaves one compart-
ment and enters another has been experimentally observed to be proportional
to the amount that leaves the first compartment. Here is the compartment
diagram that illustrates the flow of lead through the body.

Tissue
y

Blood
x

Bones
z�

� �

�

�

� �

k1x

k2 y
k5 y k6x

L
k3x

k4z

In the diagram, L is the inflow rate of lead into the bloodstream (from the
lungs and GI tract), x, y, and z are the respective amounts of lead in the blood,
tissues, and bones, and k1, . . . , k6 are experimentally determined positive rate
constants. The amount of lead is measured in micrograms (1 microgram =
10−6 gram), and time (t) is measured in days.
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Figure 8.3: Five environmental clean-up scenarios for t > 400 days result in
five different steady-state lead levels in the blood.

Applying the balance law to each compartment, we have the linear system

☞ System (4) is a driven
linear system with constant
coefficients, so
eigenvalue/eigenvector
techniques can be used to find
solution formulas if L is a
constant (see Chapter 6).

of ODEs that models the flow of lead through the body compartments:

x′ = (L + k2 y + k4z) − (k1 + k3 + k6)x

y′ = k1x − (k2 + k5)y

z′ = k3x − k4z

(4)

Unlike the allergy relief system (2), system (4) is not a cascade. Lead moves
back and forth between compartments, so the system cannot be solved one
ODE at a time. ODE Architect can be used to find x(t), y(t), and z(t) if x(0),
y(0), z(0), L(t), and k1, . . . , k6 are known.

If the goal is to reduce the amount of lead in the blood (and therefore in
the tissues and bones), we can clean up the environment (which reduces the
inflow rate) or administer a medication that increases the clearance coefficient
k6. However, such medication carries its own risks, so most efforts today are
aimed at removing lead from the environment. A major step in this direction
was made in the 1970s and ’80s when oil companies stopped adding lead to☞ It was in the 1970’s and

’80s that most of the
environmental protection laws
were enacted.

gasoline and paint manufacturers began to use other spreading agents in place
of lead. Figure 8.3 shows the effects of changing the lead intake rate L.

The Food and Drug Administration and the National Institutes of Health
have led the fight against lead pollution in the environment. They base their
efforts on data acquired from several controlled studies of lead flow, where the
study groups were made up of human volunteers in urban areas. The numbers
we use in Submodule 3 of Module 8 and in this chapter come from one of☞ See Screen 3.3 in

Module 8 for the rate constants
and the inflow rate L.

those studies. Some references on the lead problem are listed below.
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✓ Write down the systems of ODEs for the two compartment diagrams:

x y� � �

�

2 4x 5y

3x

x

y

z

�

�

�

�
�

�

1
2x

3x

4z 5y

6z

(a) (b)

References Batschelet, E., Brand, L., and Steiner, A., “On the kinetics of lead in the
human body,” J. Math. Bio., 8 (1979), pp. 15–23

Kessel, I., and O’Conner, J., Getting the Lead Out (1997: Plenum)

Rabinowitz, M., Wetherill, G., and Kopple, J., “Lead metabolism in the nor-
mal human: Stable isotope studies,” Science, 182 (1973), pp. 725–727.

◆ Equilibrium

In many compartment models, if the inflow rates from outside the system are
constant, then the substance levels in each compartment tend to an equilibrium
value as time goes on. Mathematically, we can find the equilibrium values by
setting each rate equal to zero and solving the resulting system of equations
simultaneously. For example, the equilibrium for the system

x′ = 1 − 2x

y′ = 2x − 3y
(5)

is x = 1/2, y = 1/3, which is the solution to the algebraic system 1 − 2x = 0
and 2x − 3y = 0. If the system is complicated, you can use ODE Architect☞ The Equilibrium tabs in

ODE Architect work for systems
such as (5), where the rate
functions don’t depend explicitly
on time (i.e., the systems are
autonomous).

to find the equilibrium values. Just use the Equilibrium tabs in the lower
left quadrant and in one of the right quadrants, and you will get approximate
values for the equilibrium levels.

✓ Go to Things-to-Think-About 2 on Screen 3.5 of Module 8 for the lead
flow model with constant values for L and the coefficients k j. Use the Equi-
librium tabs in the tool screen to estimate the equilibrium lead levels in the
blood, tissues, and bones for the given data.

✓ Suppose that x is a column vector with n entries, b is a column vector of☞ You need to know about
matrices to tackle this one. n constants, and A is an n × n invertible matrix of real constants. Can you

explain why the linear system x′ = Ax − b has a constant equilibrium x∗?
Find a formula for x∗ in terms of A−1 and b.
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◆ The Autocatalator and a Hopf Bifurcation

So far the compartments in our models have represented physical spaces through
which substances move. However, there are other ways to think about com-
partments. For example, they can represent substances that transform into one
another, such as uranium 238 and all of its seventeen radioactive decay prod-
ucts, ending with stable lead 206. Or think of a chemical reactor in which
chemicals react with one another and produce other chemicals. The autocata-
lator is a mathematical model for one of these chemical reactions.

In an autocatalytic reaction, a chemical promotes its own production.
For example, suppose that one unit of chemical X reacts with two units of
chemical Y to produce three units of Y , a net gain of one unit of Y :

X + 2Y
k−→ 3Y

where k is a positive rate constant. This is an example of autocatalysis. We’ll
come back to autocatalysis, but first we need to make a quick survey of how
chemical reactions are modeled by ODEs.

Most chemical reactions are first-order in the sense that the rate of decay
of each chemical in the reaction is directly proportional to its own concentra-
tion:

dz
dt

= −kz (6)

where z(t) is the concentration of chemical Z at time t in the reactor and k is
a positive rate constant.

While a first-order reaction is modeled by a linear ODE, such as (6),
autocatalytic reactions are higher-order and the corresponding rate equations
are nonlinear. In order to build models of higher-order chemical reactions,
we will use a basic principle called the Chemical Law of Mass Action:

The Chemical Law of Mass Action. If molecules X1, . . . , Xn react to
produce molecules Y1, . . . , Ym in one step of the chemical reaction

X1 + · · · + Xn
k−→ Y1 + · · · + Ym

that occurs with rate constant k, then

x′
i = −kx1x2 · · · xn, 1 ≤ i ≤ n

y′
j = kx1x2 · · · xn, 1 ≤ j ≤ m

where xi and y j are, respectively, the concentrations of Xi and Yj. The
chemical species X1, . . . , Xn, Y1, . . . , Ym need not be distinct from each
other: more than one molecule of a given type may be involved in the
reaction.
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For example, the chemical law of mass action applied to the reaction

X + Y
k−→ Z

gives

x′ = −kxy, y′ = −kxy, and z′ = kxy

where k is a positive rate constant and x, y, z denote the respective concen-
trations of the chemicals X, Y, Z in the reactor. The autocatalytic reaction

X + 2Y
k−→ 3Y

is modeled by

x′ = −kxy2

y′ = −2kxy2 + 3kxy2 = kxy2

because the rate of decrease of the reactant concentration x is kxy2 (think of
X + 2Y as X + Y + Y), the rate of decrease of the reactant concentration y
is 2kxy2 (because two units of Y are involved), and the rate of increase in the
product concentration y is 3kxy2 (think of 3Y as Y + Y + Y).

✓ If you want to speed up the reaction should you increase the rate constant
k, or lower it? Any guesses about what would happen if you heat up the
reactor? Put the reactor on ice?

With this background, we can model a sequence of reactions that has been
studied in recent years:

X1
k1−→ X2, X2

k2−→ X3, X2 + 2X3
k3−→ 3X3, X3

k4−→ X4

Note the nonlinear autocatalytic step in the midst of the first-order reactions.
A compartment diagram for this reaction is

x1 x2 x3 x4�

�

�

�

k1x1
k2x2

k3x2x2
3

k4x3

where x1, x2, x3, and x4 denote the respective concentrations of the chemicals
X1, X2, X3, and X4. The corresponding ODEs are:

☞ The term k3x2x2
3 makes

this system nonlinear.

x′
1 = −k1x1

x′
2 = k1x1 − (k2x2 + k3x2x2

3)

x′
3 = (k2x2 + k3x2x2

3) − k4x3

x′
4 = k4x3

(7)

In a reaction like this, we call X1 the reactant, X2 and X3 intermediates, and
X4 the final product of the reaction. For certain ranges of values for the rate☞ See Screen 4.3 of

Module 8 for values of the rate
constants.

constants k1, k2, k3, k4 and for the inital reactant concentration x1(0), the



Id: chapter8.tex,v 1.9 1998-06-30 01:10:30-07 drichard Exp ODE Architect Workbook Page 144 on June 30, 1998 at 3:06

144 Chapter 8

Scaled concentrations 

0 250 500 750 1000

Scaled time t

0

0.5

1

1.5

2

2.5

x1
/2

00
,  

x2
,  

x3
,  

x4
/2

00

Figure 8.4: As the reactant falls into the Hopf bifurcation zone, the oscillations
of the intermediates turn on as the product rises. Later the oscillations turn
off and the reaction approaches completion.

intermediate concentrations x2(t) and x3(t) will suddenly begin to oscillate.
These oscillations eventually stop and the intermediates decay into the final☞ The chapter cover figure

shows how the intermediate
concentrations x2(t) and x3(t)
play off against each other as
time increases.

reaction product. See Figure 8.4.
The onset of these oscillations is a kind of a Hopf bifurcation for x2(t)

and x3(t). In this context, if we keep the value of x1 fixed at, say x∗
1, the rate

term k1x∗
1 in system (7) can be viewed as a parameter c. Then the middle two

rate equations can be decoupled from the other two:

x′
2 = c − k2x2 − k3x2x2

3

x′
3 = k2x2 + k3x2x2

3 − k4x3
(8)

Now let’s fix k2, k3, and k4 and use the parameter c to turn the oscillations in
x2(t) and x3(t) on and off. This is the setting for a Hopf bifurcation, so let’s
take a detour and explain what that is.

As a parameter transits a bifurcation value the behavior of the state vari-
ables suddenly changes. A Hopf bifurcation is a particular example of this
kind of behavioral change. Suppose that we have a system that involves a
parameter c,

x′ = f (x, y, c)

y′ = g(x, y, c)
(9)

and that has an equilibrium point P at x = a, y = b [so that f (a, b, c) = 0
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and g(a, b, c) = 0]. Suppose that the matrix of partial derivatives

☞ This is the Jacobian matrix
of system (9). See Chapter 6. J =




∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y




x=a,y=b

has the complex conjugate eigenvalues α(c) ± i β(c). The Dutch mathemati-
cian Eberhard Hopf showed that if :

(a) the functions f and g are twice differentiable,
(b) P is a stable, attracting sink for some value c0 of the parameter c,
(c) α(c0) = 0,☞ The Hopf conditions.

(d) [dα/dc]c=c0 �= 0,
(e) β(c0) �= 0,

then as the parameter c varies through the bifurcation value c0, the attracting☞ Since α′(c0) �= 0, α(c)

changes sign as c goes through
c0; this means that P goes from a
sink to a source, or the other way
around.

equilibrium point P destabilizes and an attracting limit cycle appears (i.e., an
attracting periodic orbit in the xy-phase plane) that grows in amplitude as c
changes beyond the value c0.

It isn’t always a simple matter to check the conditions for a Hopf bifurca-
tion (especially condition (b)). It is often easier just to apply the Architect to
the system and watch what happens to solution curves and trajectories when
a parameter is swept over a range of values. For instance, for system (8) with
values k2 = 0.08 and k3 = k4 = 1 for the rate constants, we can sweep the pa-
rameter c and observe the results. In particular, we want to find values of c for
which an attracting limit cycle is either spawned by P, or absorbed by P. At
and near the special c values we can use the Equilibrium feature of the ODE
Architect tool to locate the equilibrium point, calculate the Jacobian matrix,
and find its eigenvalues. We expect the eigenvalues to be complex conjugates
and the real part to change sign at the bifurcation value of c.

Figure 8.5 shows a sweep of twenty-one trajectories of system (8) with c
sweeping down from 1.1 to 0.1 and the values of k1, k2, and k3 as indicated in
the figure. See also Problem 3, Exploration 8.4.

✓ (This is the first part of Problem 3 of Exploration 8.4.) Use ODE Archi-
tect to duplicate Figure 8.5. Animate (the right icon under Tools on the top
menu bar) so that you can see how the trajectories change as c moves down-
ward from 1.1. Then use the Explore feature to determine which values of c
spawn or absorb a limit cycle. For what range of values of c does an attracting
limit cycle exist?

This behavior of the system (8) carries over to the autocatalator sys-
tem (7). Notice that the first equation in (7) is x′

1 = −k1x1, which is easily
solved to give x1(t) = x1(0)e−k1t. If k1 is very small, say k1 = 0.002, the
exponential decay of x1 is very slow, so that if x1(0) = 500, the term k1x1(t),
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Figure 8.5: Twenty-one trajectories of system (8) for twenty-one values of c;
initial data is x2(0) = x3(0) = 0, time interval is 100 with 1000 points.

though not constant, has values between 1 and 0.01 for a long time interval.
The behavior of the autocatalator will be similar to that of system (8).

The section “Bifurcations to a Limit Cycle” in Chapter 7 gives another
instance of a Hopf bifurcation. For more on bifurcations, see the references.

References Gray, P., and Scott, S.K., Chemical Oscillations and Instabilities (1990: Ox-
ford Univ. Press)

Hubbard, J.H., and West, B.H., Differential Equations: A Dynamical Systems
Approach, Part II: Higher Dimensional Systems, (1995: Springer-Verlag)

Scott, S.K., Chemical Chaos (1991: Oxford Univ. Press)
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 8.1. Tracking Pollution in a Lake

1. Suppose that the water flow rates into and out of a lake are sin = sout =
109 m3/yr. The (constant) lake volume is V = 1010 m3, and the concen-
tration of pollutant in the water flowing into the lake is pin = 0.0003 lb/m3.
Solve the IVP with L(0) = 0 (no initial pollution) and describe in words how
pollution builds up in the lake. Estimate the steady-state amount of pollution,
and estimate the amount of time for the pollution level to increase to half of
the asymptotic level.

2. Suppose that the lake in Problem 1 reaches its steady-state level of pollution,
and then the source of pollution is removed. Build a new IVP for this situation,
and estimate how much time it will take for the lake to clear out 50% of the
pollution. How does this time compare to the time you estimated in Problem 1
for the build-up of pollutant?
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3. What would be more effective in controlling pollution in the lake: (i) reducing
the concentration of pollutant in the inflow stream by 50%, (ii) reducing the
rate of flow of polluted water into the lake by 50%, or (iii) increasing the
outflow rate from the lake by 50%?
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 8.2. What Happens When You Take a Medication?

1. Go to the Library in ODE Architect and check out the file “Cold Pills I: A
Model for the Flow of a Single Dose of Medication in the Body” in the folder
“Biological Models.” This model tracks a unit dose of medication as it moves
from the GI tract into the blood and is then cleared from the blood. Read the
file and carry out the explorations suggested there. Record your results below.

2. Go to the Library in ODE Architect and check out “Cold Pills II: A Model
for the Flow of Medication with Periodic Dosage” in the folder “Biological
Models.” Carry out the suggested explorations.
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3. Suppose you take a decongestant pill every four hours to relieve the symp-
toms of a cold. Each pill dissolves slowly and completely over the four-hour
period between doses, releasing 16 units of decongestant at a constant rate.
The decongestant diffuses from the GI tract into the bloodstream at a rate pro-
portional to the amount in the GI tract (rate constant is a = 0.5/ hr) and is
cleared from the bloodstream at a rate proportional to the amount in the blood
(rate constant is b = 0.1/ hr). Assume that initially there is no decongestant
in the body. Write a report in which you address the following points. Be sure
to attach graphs.

(a) Write out ODEs for the amounts x(t) and y(t) in the GI tract and the
blood, respectively, at time t.

(b) Find explicit formulas for x(t) and y(t) in terms of x(0) and y(0).

(c) Use ODE Architect to plot x(t) and y(t) for 0 ≤ t ≤ 100 hr. What are
the equilibrium levels of decongestant in the GI tract and in the blood
(assuming that you continue to follow the same dosage regimen)?

(d) Graph x(t) and y(t) as given by the formulas you found in part (b) and
overlay these graphs on those produced by ODE Architect. What are
the differences?

(e) Imagine that you are an experimental pharmacologist for Get Well Phar-
maceuticals. Set lower and upper bounds for decongestant in the blood-
stream, bounds that will assure both effectiveness and safety. How long
does it take from the time a patient starts taking the medication before
the decongestant is effective? How long if you double the initial dosage
(the “loading dose”)? How about a triple loading dose?

(f) For the old or the chronically ill, the clearance rate constant from the
blood may be much lower than the average rate for a random sample
of people (because the kidneys don’t function as well). Explore this
situation and make a recommendation about lowering the dosage.

4. Repeat all of Problem 3 but assume the capsule is rapidly dissolving: it deliv-
ers the decongestant at a constant rate to the GI tract in just half an hour, then
the dosage is repeated four hours later.
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attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 8.3. Get the Lead Out

1. Check out the ODE Architect Library file “A Model for Lead in the Body” in
the “Biological Models” folder and carry out the explorations suggested there.
(The notation for the rate constants in the library file differs from the notation
used in this chapter.)

2. Use the following rate constants: k1 = 0.0039, k2 = 0.0111, k3 = 0.0124,
k4 = 0.0162, k5 = 0.000035, k6 = 0.0211, and put L = 49.3 µg/day in the
lead system (4). These values were derived directly from experiments with
volunteer human subjects living in Los Angeles in the early 1970s. Using the
data for the lead flow model, describe what happens if the lead inflow rate L
is doubled, halved, or multiplied by a constant α. Illustrate your conclusions
by using the ODE Architect to graph the lead levels in each of the three body
compartments as functions of t. Do the long-term lead levels (i.e., the equilib-
rium levels) depend on the initial values? On L? Find the equilibrium levels
for each of your values of L using ODE Architect. Find the eigenvalues of
the Jacobian matrix for each of your values of L. With the names given in
Chapter 6 to equilibrium points in mind, would you call the equilibrium lead
levels sinks or sources? Nodes, spirals, centers, or saddles?
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3. The bones act as a lead storage system, as you can see from the graphs in
Submodule 3 of Module 8. What happens if the exit rate constant k4 from the
bones back into the blood is increased from 0.000035 to 0.00035? To 0.0035?
Why might an increase in k4 be harmful? See Problem 2 for the values of L
and the rate constants ki.

4. The medication now in use for acute lead poisoning works by improving the
efficiency of the kidneys in clearing lead from the blood (i.e., it increases the
value of the rate constant k6). What if a medication were developed that in-
creased the clearance coefficient k5 from the tissues? Explore this possibility.
See Problem 2 for the values of L and the rate constants ki.

5. In the 1970s and ’80s, special efforts were made to decrease the amount of
lead in the environment because of newly enacted laws. Do you think this
was a good decision, or do you think it would have been better to direct the
efforts toward the development of a better antilead medication for cases of
lead poisoning? Why? What factors are involved in making such a decision?
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Exploration 8.4. Chemical Reactions: the Autocatalator

1. Check out “The Autocatalator Reaction” in the “Chemical Models” folder in
the ODE Architect Library and graph the concentrations suggested. Describe
how the concentrations of the various chemical species change in time.

2. Here are schematics for chemical reactions. Draw a compartment diagram for
each reaction. Then write out the corresponding sets of ODEs for the indi-
vidual chemical concentrations. [Use lower case letters for the concentrations
(e.g., x(t) for the concentration of chemical X at time t).]

(a) X + Y
k−→ Z

(b) X + Y
k1−→ Z

k2−→ W

(c) X + 2Y
k−→ Z

(d) X + 2Y
k−→ 3Y + Z
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3. Explore the behavior of x2(t) and x3(t) as governed by system (8). Start with
c = 1.1, k2 = 0.08, k3 = k4 = 1, and x(0) = y(0) = 0. Then sweep c
from 1.1 down to 0.1 and describe what happens to orbits in the x2x3-plane.
Find the range of values of c between 1.1 and 0.1 for which attracting limit
cycles are visible. These are Hopf cycles. Fix c at a value that you think is
interesting and sweep one the parameters k2, k3, or k4. Describe what you
observe. [Suggestion: Take a look at Figure 8.5, use the Animate feature of
ODE Architect to scroll through the sweep trajectories. Then use the Explore
option to get a data table with information about any of the trajectories you
have selected.]

4. Look at the autocatalator system (7) with x1(0) = 500, x2(0) = x3(0) =
x4(0) = 0 and k1 = 0.002, k2 = 0.08, k3 = k4 = 1. Graph x2(t) and x3(t)
over various time ranges and estimate the times when sustained oscillations
begin and when they finally stop. What are the time intervals between suc-
cessive maxima of the oscillations in x2? Plot a 3D tx2x3-graph over various☞ Use the Explore feature to

estimate the starting and stopping
times of the oscillator.

time intervals ranging from t = 100 to t = 1000. Describe what you see.
[Suggestion: Look at the chapter cover figure and Figure 8.4.]

Now sweep the values of x1(0) downward from 500. What is the minimal
value that generates sustained oscillations? Then fix x1(0) at 500 and try to
turn the oscillations off by changing one or more of the rate constants k1,
k2, k3, k4—this corresponds to heating or chilling the reactor. Describe your
results.
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