King Abdulaziz University
Faculty of Sciences
Physics Department

First Term

CHOOSE THE CORRECT ANSWER

1. A girl of mass 50 kg standing in a stationary elevator, her weight is:
a) 490 N
b) 550 N
c) 245 N
d) 392 N
2. Three forces act on a 2 kg object give it an acceleration $\vec{a}=-8 \hat{i}+6 \hat{j}$. if $\vec{F}_{1}=30 \hat{i}+16 \hat{j}$ and $\vec{F}_{2}=-12 \hat{i}+8 \hat{j}$ the third force is
a) $\quad \vec{F}_{3}=34 \hat{i}+12 \hat{j}$
b) $\vec{F}_{3}=-34 \hat{i}-12 \hat{j}$
c) $\vec{F}_{3}=-30 \hat{i}-6 \hat{j}$
d) $\vec{F}_{3}=8 \hat{i}-16 \hat{j}$
3. A particle in uniform circular motion of radius $r=2 m$ moved one period. The distance that the particle travelled in meters is:
a) 4π
b) 2π
c) π
d) 3π
4. A particle is said to be in uniform circular motion if
a) its velocity has a constant magnitude
b) its velocity has a constant direction
c) its velocity is directed towards the center
d) its velocity equals zero
5. 10.3 N is equal to
a) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$
b) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
c) $10.3 \frac{\mathrm{~kg}^{2} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
d) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
6. At the maximum height of a projectile, what of the following is correct?
a) Its velocity is zero
c) Its x-component velocity is zero
b) Its y-component velocity is zero
d) Its acceleration is zero

Use the following to answer questions 7-9:
In the figure, a cord holds stationary a block of mass $\mathrm{m}=8.5 \mathrm{~kg}$ on a frictionless plane that is inclined at an angle $\theta=30^{\circ}$.

7. The tension in the cord T equals:
a) 72.14 N
b) 83.3 N
c) 53.14 N
d) 41.65 N
8. The normal Force F_{N} acting on the block is
a) 53.14 N
b) 41.65 N
c) 83.3 N
d) 72.14 N
9. If the cord is cut, the magnitude of the acceleration of the block is
a) zero
b) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
c) $6 \mathrm{~m} / \mathrm{s}^{2}$
d) $4 \mathrm{~m} / \mathrm{s}^{2}$
10. A bag rests on a table, exerting a downward force on the table. The reaction to this force is:
a) The force of Earth on the bag
b) The force of the table on the bag
c) The force of the Earth on the table
d) The force of the bag on Earth
11. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F}=60 \mathrm{~N}$, what is the magnitude of the system's acceleration?

a) $3 \mathrm{~m} / \mathrm{s}^{2}$
b) $6 \mathrm{~m} / \mathrm{s}^{2}$
c) $12 \mathrm{~m} / \mathrm{s}^{2}$
d) $20 \mathrm{~m} / \mathrm{s}^{2}$
12. The cable in the figure is raising a box of mass $M=250 \mathrm{~kg}$ with an upward acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. The tension \mathbf{T} in the cable is

a) 863 N
b) 1725 N
c) 3450 N
d) 6900
13. In the figure the net force on the block is:

a) 1 N -right
b) 6 N -up
c) 3 N -left
d) 4 N -down
14. Ignoring air resistance, the acceleration of any projectile along the x direction a_{x} in (SI units) is
a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
b) zero
c) not constant
d) less than zero
15. Three forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}, \vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ and $\vec{F}_{3}=-6 \hat{j}$ acting on a body, the value of $F_{\text {net, } x}$ and $F_{\text {net, }}$ are:
a) $F_{\text {net }, x}=6 \mathrm{~N}$ and $F_{\text {net, }, y}=-8 \mathrm{~N}$
b) $F_{\text {net }, x}=-6 \mathrm{~N}$ and $F_{\text {net, }, y}=8 \mathrm{~N}$
c) $F_{\text {net }, x}=0$ and $F_{\text {net }, y}=-6 \mathrm{~N}$
d) $F_{\text {net }, \mathrm{x}}=9 \mathrm{~N}$ and $F_{\text {net, }, ~}=16 \mathrm{~N}$
16. Two forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body, from the free body diagram the vectors that represent \vec{F}_{1} and \vec{F}_{2} are

a) \vec{F}_{1} is vector $\mathbf{1}, \vec{F}_{2}$ is vector $\mathbf{3}$
b) \vec{F}_{1} is vector $\mathbf{2}, \vec{F}_{2}$ is vector $\mathbf{4}$
c) \vec{F}_{1} is vector $\mathbf{3}, \vec{F}_{2}$ is vector $\mathbf{1}$
d) \vec{F}_{1} is vector $\mathbf{4}, \vec{F}_{2}$ is vector $\mathbf{2}$

Use the following to answer questions 17-20:
A block lies on a floor as shown in the figure

17. The magnitude of the frictional force on it from the floor when $F=0$
a) 0
b) 5 N
c) 20 N
d) 8 N
18. When F pulls the block to the right with an acceleration a_{x}, The coefficient of Kinetic friction μ_{K} is:
a) $\mu_{k}=\frac{F-m a_{x}}{F_{N}}$
b) $\mu_{k}=\frac{F_{N}}{F-m a_{x}}$
c) $\mu_{k}=\frac{m a_{x}}{F_{N}}$
d) $\mu_{k}=\frac{m a_{x}-F}{F_{N}}$
19. The magnitude of the frictional force on it from the floor when $F=8 \mathbf{N}$, but the block does not move
a) 0
b) 5 N
c) 20 N
d) 8 N
20. If the maximum static frictional force $f_{s, \max }=20 \mathrm{~N}$, the block will move to the right when F is equal to
a) 21 N
b) 15 N
c) 19 N
d) 12 N
21. A car moves in a circular road of radius $r=7.6 \mathrm{~m}$ with a speed $96.6 \mathrm{~km} / \mathrm{h}$, the car's acceleration is:
a) $18.4 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
b) $12.3 \times 10^{5} \mathrm{~km} / \mathrm{h}^{2}$
c) $20.7 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
d) $15.8 \times 10^{2} \mathrm{~km} / \mathrm{h}^{2}$
22. Two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force (Fg) on $\mathbf{m}_{\mathbf{2}}$ is

a) 25 N
b) 245 N
c) 2450 N
d) 5 N
23. The position vector of a moving car in meters is: $\vec{r}=\left(3 t^{3}\right) \hat{i}+\left(4 t^{2}+3\right) \hat{j}$, its acceleration at $\mathbf{t}=1 \mathrm{~s}$ is:
a) $\vec{a}=18 \hat{i}+8 \hat{j}$
b) $\vec{a}=8 \hat{i}+18 \hat{j}$
c) $\vec{a}=9 \hat{i}+18 \hat{j}$
d) $\vec{a}=9 \hat{i}+8 \hat{j}$
24. The position of a moving particle is $\vec{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}$, its velocity as a function of time is;
a) $\vec{v}=8 \hat{j}$
b) $\vec{v}=8 t \hat{j}+\hat{k}$
c) $\vec{v}=\hat{i}+8 t \hat{j}+\hat{k}$
d) $\vec{v}=8 t \hat{j}$
25. According to Newton's second law, the force and acceleration are:
a) in the opposite direction.
c) perpendicular to each other.
b) in the same direction.
d) scalar quantities.
26. The position of a particle was initially at $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and later at $\vec{r}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$. The particle's displacement vector is:
a) $\Delta \vec{r}=-7 \hat{i}+12 \hat{j}$
b) $\Delta \vec{r}=3 \hat{i}+4 \hat{j}$
c) $\Delta \vec{r}=7 \hat{i}-12 \hat{j}$
d) $\Delta \vec{r}=3 \hat{i}+12 \hat{j}+4 \hat{k}$
27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x=-2 t^{2}+10 t+30$, and $y=t^{2}-5 t+10$ at $\mathbf{t}=$ $10 \boldsymbol{s}$ the position vector \vec{r} is:
a) $\vec{r}=70 \hat{i}-60 \hat{j}$
b) $\vec{r}=60 \hat{i}-70 \hat{j}$
c) $\vec{r}=-60 \hat{i}+70 \hat{j}$
d) $\vec{r}=-70 \hat{i}+60 \hat{j}$

Use the following to answer questions 28-30:
A ball rolls horizontally off the top of a building with a speed of $30 \mathrm{~m} / \mathrm{s}$. If the ball landed on the ground in a time $t=3.03 \mathrm{~s}$
28. The height of the building from the ground is
a) 45 m
b) 14.8 m
c) 90 m
d) 22 m
29. At what horizontal distance from the rolling point does the projectile strikes the ground
a) 9.9 m
b) 90.9 m
c) 0.9 m
d) 99 m
30. What is the magnitude of the vertical component of its velocity as it strikes the ground
a) $2.9 \mathrm{~m} / \mathrm{s}$
b) $0.31 \mathrm{~m} / \mathrm{s}$
c) $3.2 \mathrm{~m} / \mathrm{s}$
d) $29.7 \mathrm{~m} / \mathrm{s}$
31. A block of mass M is connected to a block of mass m as shown. The normal force on block M is:

a) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}$
b) $F_{N}=M g-T$
c) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}-\mathrm{T}$
d) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$
32. A particle moves from $\vec{r}_{1}=(-10 m) \hat{k}$ to $\vec{r}_{2}=(24 m) \hat{i}$ in 2 s . Its average velocity is:
a) $\vec{v}_{\text {avg }}=\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
b) $\vec{v}_{\text {avg }}=\left(12 \frac{m}{s}\right) \hat{i}+\left(5 \frac{m}{s}\right) \hat{k}$
c) $\vec{v}_{\text {avg }}=\left(-10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
d) $\vec{v}_{\text {avg }}=\left(-5 \frac{m}{s}\right) \hat{i}+\left(12 \frac{m}{s}\right) \hat{k}$
33. A force F is applied to an object of mass $m_{1}=45 \mathrm{~kg}$ produces an acceleration of 2 $\mathrm{m} / \mathrm{s}^{2}$. The same force is applied to a second object of mass m_{2} produces an acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. The value of m_{2} is
a) 45 kg
b) 60 kg
c) 30 kg
d) 67 kg

Answer Key

1. a
2. b
3. a
4. a
5. a
6. b
7. d
8. d
9. b
10. b
11. a
12. c
13. c
14. b
15. c
16. d
17. a
18. a
19. d
20. a
21. b
22. b
23. a
24. b
25. b
26. a
27. d
28. a
29. b
30. d
31. a
32. b
33. b
