Name:	Number:	Section:
Physics 110	27/11/1432H	Time: 2Hours
KING ABDULAZIZ UNIVERSIT FACULTY OF SCIENCE Physics department 1 st Semester First Exam		A

Choose the correct answer:

- **1.** $(5 \times 10^4) \times (5 \times 10^6) =$
 - **A)** 2.5×10^{10} **B)** 2.5×10^{11} **C)** 2.5×10^{6} **D)** 2.5×10^{8}
- 2. 3 days =
 - A) 30240 s B) 1814400 s C) 259200 s D) 2419200 s
- **3.** 7.87 g/cm³ =
 - **A)** 7870 kg/m³ **B)** 0.00787 kg/m³ **C)** 7.87×10^{6} kg/m³ **D)** 7.87×10^{-6} kg/m³
- **4.** The conversion factor $(\frac{10^6 \text{ mm}}{1 \text{ km}})$ is used to convertto *mm*
 - A) 1 m B) 1 mm C) 1 km D) 1 mi
- **5.** 500 kg =
 - **A)** 5×10^{3} g **B)** 5×10^{4} g **C)** 5×10^{5} g **D)** 5×10^{6} g
- **6.** 2.71 gigawatts =
 - **A)** 2.71×10^9 Watts **B)** 2.71×10^6 Watts **C)** 271×10^9 Watts **D)** 271×10^6 Watts

7. The position of a body moving along the x-axis is given by $x = 3t - 4t^2 + t^3$, where x in meters and t in seconds. Its **displacment** in the time interval t = 0 to t = 4 s is

A) $\Delta x = 140 \text{ m}$ **B)** $\Delta x = 12 \text{ m}$ **C)** $\Delta x = 52 \text{ m}$ **D)** $\Delta x = 40 \text{ m}$

- **8.** The **position** of an object is given by $x = t 2t^2$, where x in meters and t in seconds. At t = 10 s, it is
 - **A)** -190 m **B)** -100 m **C)** -10 m **D)** -90 m
- 9. A car travelled 50 km in 0.75 h, then travelled 100 km in 1.2 h. The average speed is
 - A) 77 km/h B) 333 km/h C) 111 km/h D) 26 km/h
- **10.** A car changed position from x = 25 m to x = 150 m in the time interval from 3 s to 8 s, the **average velocity** of the car is
 - **A)** 25 m/s **B)** 11.4 m/s **C)** 35 m/s **D)** 16 m/s
- **11.** The vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = \vec{b} + \vec{c}$. Which diagram below illustrates this relationship?

- **12.** A particle is moving along x-axis according to the equation $x = 12t 2t^2$, where x in meters and t in seconds. Its **velocity** and **acceleration** at t = 3 s, respectively ($abc = 12t 2t^2$), are
 - **A)** v = 0, a = -4 m/s² **C)** v = 24 m/s, a = 8 m/s²
 - **B)** v = 18 m/s, a = 0 **D)** $v = -24 \text{ m/s}, a = 4 \text{ m/s}^2$
- **13.** The position of a particale is given by $x(t) = 20t 5t^3$, where x in meters and t in seconds, its velocity is zero at **t** =

A) 1.2 s B) 0.87 s C) 1.4 s D) 0.7 s

14. A particle has a constant acceleration (-1.25×10^{14} m/s²) enters a region with a speed of 5×10^{6} m/s. How far does the particle take to stop

A) 0.1 m B) -0.1 m C) 1 m D) -1 m

15. An electron has a constant acceleration $+3.2 \text{ m/s}^2$ at a certain instant, its velocity is +9.6 m/s. What is **the velocity** at t = 2.5s

A) 17.6 m/s **B)** 8 m/s **C)** 27.2 m/s **D)** 0.8 m/s

16. The **velocity** of a stone falling from a height of 100 m just before hitting the ground is

A) -1960 m/s **B)** -980 m/s **C)** -31.3 m/s **D)** -44.3 m/s

17. A ball dropped from a building, its **velocity and position** after 3 s are

A)	v = -29 m/s, y = -44 m	C) $v = 0, y = 0$
B)	v = -44 m/s, y = -29 m	D) $v = 0, y = -44 \text{ m}$

18. A baseball is thrown vertically into the air. The **acceleration** of the ball at its highest point is

A) a = zero **B)** $a > 9.8 \text{ m/s}^2$ **C)** $a = 9.8 \text{ m/s}^2$ **D)** $a = -9.8 \text{ m/s}^2$

19. If $\vec{R} \times \vec{S} = \vec{C}$, then the direction of \vec{C} is

- **C)** perpendicular to \vec{S} A) perpendicular to both \vec{R} and \vec{S}
- **B)** perpendicular to \vec{R}

- **D**) in the same direction of \vec{R} and \vec{S}
- **20.** The magnitudes of displacment \vec{a} and \vec{b} are 8 m and 15 m, respectively (على التوالي). **The maximum possible magnitude** for \vec{c} according to the equation $\vec{c} = \vec{a} + \vec{b}$ is

A) 7 m B) 23 m C) 15 m D) 8m

21. A displacment vector \vec{r} in xy plane is 15 m long and directed at angle $\theta = 30^{\circ}$ as in the figure, **the** x-**component** and y-**component** of the vector \vec{r} is

A)
$$r_x = 13 \text{ m}, r_y = 7.5 \text{ m}$$
C) $r_x = 0.9 \text{ m}, r_y = 0.5 \text{ m}$ B) $r_x = 7.5 \text{ m}, r_y = 13 \text{ m}$ D) $r_y = 0.5 \text{ m}, r_y = 0.9 \text{ m}$

22. For the vectors $\vec{a} = 6 \ \hat{i} + 5 \ \hat{j}$ and $\vec{b} = -3 \ \hat{i} - \hat{j}$. The magnitude of $|\vec{a} + \vec{b}|$ is

A) 7.8 m B) 5 m C) 2.2 m D) 10.8 m

23. The *x*-component of \vec{A} is 81 m and the *y*-component of \vec{A} is 200 m, then **the angle** θ between the direction of \vec{A} and the positive direction of *x* is

A)
$$\tan^{-1}(\frac{200}{81})$$
 B) $\tan^{-1}(\frac{-200}{81})$ **C)** $\tan^{-1}(\frac{81}{200})$ **D)** $\tan^{-1}(\frac{-81}{200})$

24. The **speed** of a particle moves with an instantaneous velocity v = -25 m/s is:

A)
$$S = 5 \text{ m/s}$$
 B) $S = -25 \text{ m/s}$ **C)** $S = 25 \text{ m/s}$ **D)** $S = -5 \text{ m/s}$

25. In the figure, what are **the signs of** x **and** y – **components** of the sum $\vec{d_1} + \vec{d_2}$, respectively

- **26.** If $\vec{a} = 3\hat{i} + 3\hat{j} 2\hat{k}$ and $\vec{b} = -\hat{i} 4\hat{j} + 2\hat{k}$, then $3\vec{a} \cdot \vec{b} =$
 - **A)** -57 **B)** -19 **C)** 12 **D)** -21

27. Vectors \vec{C} and \vec{D} have magnitude of 5 units and 3.6 units, respectively (a_{L}). What is **the angle** between the direction of \vec{C} and \vec{D} if $\vec{C} \cdot \vec{D}$ equals to -6 units

A) 109.5° **B)** -19.4° **C)** -18.4° **D)** 95°

28. If $\vec{A} = 18$ unit, $\vec{B} = 12$ unit and $\phi = 90^{\circ}$. If $\vec{C} = \vec{A} \times \vec{B}$, then **the magnitude** of a vector \vec{C} is

A) 216 **B)** 0 **C)** 187.1 **D)** 108

29. The value of $\hat{i} \cdot (\hat{k} \times \hat{i}) =$

A) Zero **B)** 1 **C)** $\hat{i} \cdot \hat{i}$ **D)** $\hat{i} \cdot \hat{k}$

30. The **right-hand rule** (^{قاعدة} اليد اليمنى) is used to find

- **A)** The cross product of two vectors
- **B)** The direction of third vector produced from cross product
- **C)** The magnitude of third vector produced from cross product
- **D)** The angle between the vectors in the cross product

31. A particle moves in the positive x – direction with increasing speed

- A) its velocity is +ve and acceleration is -ve
- **B)** its velocity is -ve and acceleration is +ve
- C) its velocity and acceleration are both +ve
- **D**) its velocity is +ve and acceleration is zero
- **32.** In which situation of the following the velocity is in negative x direction

A) $x = -2 t^{2} - 2$ **B)** $x = 3 t^{3} - 5$ **C)** $x = -2 t^{-2} + 1$ **D)** x = -5 + 5 t

33. Let $\vec{C} = \vec{A} \times \vec{B}$ and ϕ is the angle between \vec{A} and \vec{B} , which of the following is **true**?

- **A)** The angle between \vec{C} and $\vec{A} = 0^0$ **B)** The magnitude of $\vec{C} = AB\cos\phi$ **C)** $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ **D)** $-\vec{C} = \vec{A}$
- **B)** The magnitude of $\vec{C} = AB\cos\phi$

Answer Key

1. B

2. C **3.** A **4.** C **5.** C **6.** A **7.** B **8.** A **9.** A **10.** A **11.** C **12.** A **13.** A **14.** A **15.** A **16.** D **17.** A **18.** D **19.** A **20.** B **21.** A **22.** B **23.** A **24.** C **25.** C **26.** A **27.** A **28.** A

29. A
30. B
31. C
32. A
33. C