KING ABDULAZIZ UNIVERSITY FACULTY OF SCIENCE
Physics department
$1^{\text {st }}$ Semester
First Exam

Physics 110
27/11/1432H

Name:
Number:

Section:

Choose the correct answer:

1. $\left(5 \times 10^{4}\right) \times\left(5 \times 10^{6}\right)=$
A) 2.5×10^{10}
B) 2.5×10^{11}
C) 2.5×10^{6}
D) 2.5×10^{8}
2. 3 days $=$
A) 30240 s
B) 1814400 s
C) 259200 s
D) 2419200 s
3. $7.87 \mathrm{~g} / \mathrm{cm}^{3}=$
A) $7870 \mathrm{~kg} / \mathrm{m}^{3}$
B) $0.00787 \mathrm{~kg} / \mathrm{m}^{3}$
C) $7.87 \times 10^{6} \mathrm{~kg} / \mathrm{m}^{3}$
D) $7.87 \times 10^{-6} \mathrm{~kg} / \mathrm{m}^{3}$
4. The conversion factor $\left(\frac{10^{6} \mathrm{~mm}}{1 \mathrm{~km}}\right)$ is used to convert \qquad to mm
A) 1 m
B) 1 mm
C) 1 km
D) 1 mi
5. $500 \mathrm{~kg}=$
A) $5 \times 10^{3} \mathrm{~g}$
B) $5 \times 10^{4} \mathrm{~g}$
C) $5 \times 10^{5} \mathrm{~g}$
D) $5 \times 10^{6} \mathrm{~g}$
6. 2.71 gigawatts =
A) 2.71×10^{9} Watts
B) 2.71×10^{6} Watts
C) 271×10^{9} Watts
D) 271×10^{6} Watts
7. The position of a body moving along the x-axis is given by $x=3 t-4 t^{2}+t^{3}$, where x in meters and t in seconds. Its displacment in the time interval $t=0$ to $t=4 \mathrm{~s}$ is
A) $\Delta x=140 \mathrm{~m}$
B) $\Delta x=12 \mathrm{~m}$
C) $\Delta x=52 \mathrm{~m}$
D) $\Delta x=40 \mathrm{~m}$
8. The position of an object is given by $x=t-2 t^{2}$, where x in meters and t in seconds. At $t=10$ s, it is
A) -190 m
B) -100 m
C) -10 m
D) -90 m
9. A car travelled 50 km in 0.75 h , then travelled 100 km in 1.2 h . The average speed is
A) $77 \mathrm{~km} / \mathrm{h}$
B) $333 \mathrm{~km} / \mathrm{h}$
C) $111 \mathrm{~km} / \mathrm{h}$
D) $26 \mathrm{~km} / \mathrm{h}$
10. A car changed position from $x=25 \mathrm{~m}$ to $x=150 \mathrm{~m}$ in the time interval from 3 s to 8 s , the average velocity of the car is
A) $25 \mathrm{~m} / \mathrm{s}$
B) $11.4 \mathrm{~m} / \mathrm{s}$
C) $35 \mathrm{~m} / \mathrm{s}$
D) $16 \mathrm{~m} / \mathrm{s}$
11. The vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=\vec{b}+\vec{c}$. Which diagram below illustrates this relationship?
A)

B)

C)

D)

12. A particle is moving along x-axis according to the equation $x=12 t-2 t^{2}$, where x in meters and t in seconds. Its velocity and acceleration at $t=3 \mathrm{~s}$, respectively (عنى التُوالمي), are
A) $v=0, a=-4 \mathrm{~m} / \mathrm{s}^{2}$
B) $v=18 \mathrm{~m} / \mathrm{s}, a=0$
C) $v=24 \mathrm{~m} / \mathrm{s}, a=8 \mathrm{~m} / \mathrm{s}^{2}$
D) $v=-24 \mathrm{~m} / \mathrm{s}, a=4 \mathrm{~m} / \mathrm{s}^{2}$
13. The position of a particale is given by $x(t)=20 t-5 t^{3}$, where x in meters and t in seconds, its velocity is zero at $\boldsymbol{t}=$
A) 1.2 s
B) 0.87 s
C) 1.4 s
D) 0.7 s
14. A particle has a constant acceleration ($-1.25 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$) enters a region with a speed of 5×10^{6} m / s. How far does the particle take to stop
A) 0.1 m
B) -0.1 m
C) 1 m
D) -1 m
15. An electron has a constant acceleration $+3.2 \mathrm{~m} / \mathrm{s}^{2}$ at a certain instant, its velocity is $+9.6 \mathrm{~m} / \mathrm{s}$. What is the velocity at $t=2.5 \mathrm{~s}$
A) $17.6 \mathrm{~m} / \mathrm{s}$
B) $8 \mathrm{~m} / \mathrm{s}$
C) $27.2 \mathrm{~m} / \mathrm{s}$
D) $0.8 \mathrm{~m} / \mathrm{s}$
16. The velocity of a stone falling from a height of 100 m just before hitting the ground is
A) $-1960 \mathrm{~m} / \mathrm{s}$
B) $-980 \mathrm{~m} / \mathrm{s}$
C) $-31.3 \mathrm{~m} / \mathrm{s}$
D) $-44.3 \mathrm{~m} / \mathrm{s}$
17. A ball dropped from a building, its velocity and position after 3 s are
A) $v=-29 \mathrm{~m} / \mathrm{s}, y=-44 \mathrm{~m}$
B) $v=-44 \mathrm{~m} / \mathrm{s}, y=-29 \mathrm{~m}$
C) $v=0, y=0$
D) $v=0, y=-44 \mathrm{~m}$
18. A baseball is thrown vertically into the air. The acceleration of the ball at its highest point is
A) $a=$ zero
B) $a>9.8 \mathrm{~m} / \mathrm{s}^{2}$
C) $a=9.8 \mathrm{~m} / \mathrm{s}^{2}$
D) $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
19. If $\vec{R} \times \vec{S}=\vec{C}$, then the direction of \vec{C} is
A) perpendicular to both \vec{R} and \vec{S}
C) perpendicular to \vec{S}
B) perpendicular to \vec{R}
D) in the same direction of \vec{R} and \vec{S}
20. The magnitudes of displacment \vec{a} and \vec{b} are 8 m and 15 m , respectively (عنى التُواني). The maximum possible magnitude for \vec{c} according to the equation $\vec{c}=\vec{a}+\vec{b}$ is
A) 7 m
B) 23 m
C) 15 m
D) 8 m
21. A displacment vector \vec{r} in $x y$ plane is 15 m long and directed at angle $\theta=30^{\circ}$ as in the figure, the x-component and y-component of the vector \vec{r} is \qquad
A) $r_{x}=13 \mathrm{~m}, r_{y}=7.5 \mathrm{~m}$
B) $r_{x}=7.5 \mathrm{~m}, r_{y}=13 \mathrm{~m}$
C) $r_{x}=0.9 \mathrm{~m}, r_{y}=0.5 \mathrm{~m}$
D) $r_{x}=0.5 \mathrm{~m}, r_{y}=0.9 \mathrm{~m}$
22. For the vectors $\vec{a}=6 \hat{i}+5 \hat{j}$ and $\vec{b}=-3 \hat{i}-\hat{j}$. The magnitude of $|\vec{a}+\vec{b}|$ is
A) 7.8 m
B) 5 m
C) 2.2 m
D) 10.8 m
23. The x-component of \vec{A} is 81 m and the y-component of \vec{A} is 200 m , then the angle θ between the direction of \vec{A} and the positive direction of x is
A) $\tan ^{-1}\left(\frac{200}{81}\right)$
B) $\tan ^{-1}\left(\frac{-200}{81}\right)$
C) $\tan ^{-1}\left(\frac{81}{200}\right)$
D) $\tan ^{-1}\left(\frac{-81}{200}\right)$
24. The speed of a particle moves with an instantaneous velocity $v=-25 \mathrm{~m} / \mathrm{s}$ is:
A) $S=5 \mathrm{~m} / \mathrm{s}$
B) $S=-25 \mathrm{~m} / \mathrm{s}$
C) $S=25 \mathrm{~m} / \mathrm{s}$
D) $S=-5 \mathrm{~m} / \mathrm{s}$
25. In the figure, what are the signs of x and y-components of the sum $\vec{d}_{1}+\vec{d}_{2}$, respectively

A) $(+,-)$
B) $(+,+)$
C) $(-,+)$
D) $(-,-)$
26. If $\vec{a}=3 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=-\hat{i}-4 \hat{j}+2 \hat{k}$, then $3 \vec{a} \cdot \vec{b}=$
A) -57
B) -19
C) 12
D) -21
27. Vectors \vec{C} and \vec{D} have magnitude of 5 units and 3.6 units, respectively (عنى التّوالـي). What is the angle between the direction of \vec{C} and \vec{D} if $\vec{C} \cdot \vec{D}$ equals to -6 units
A) 109.5°
B) -19.4^{0}
C) -18.4^{0}
D) 95°
28. If $\overrightarrow{\mathrm{A}}=18$ unit, $\overrightarrow{\mathrm{B}}=12$ unit and $\phi=90^{\circ}$. If $\vec{C}=\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}$, then the magnitude of a vector \vec{C} is
A) 216
B) 0
C) 187.1
D) 108
29. The value of $\hat{i} \cdot(\hat{k} \times \hat{i})=$
A) Zero
B) 1
C) $\hat{i} \cdot \hat{i}$
D) $\hat{i} \cdot \hat{k}$
30. The right-hand rule (قاعدةّ اليد اليمنى) is used to find
A) The cross product of two vectors
B) The direction of third vector produced from cross product
C) The magnitude of third vector produced from cross product
D) The angle between the vectors in the cross product
31. A particle moves in the positive x-direction with increasing speed
A) its velocity is +ve and acceleration is -ve
B) its velocity is -ve and acceleration is +ve
C) its velocity and acceleration are both +ve
D) its velocity is +ve and acceleration is zero
32. In which situation of the following the velocity is in negative x-direction
A) $x=-2 t^{2}-2$
B) $x=3 t^{3}-5$
C) $x=-2 t^{-2}+1$
D) $x=-5+5 t$
33. Let $\vec{C}=\vec{A} \times \vec{B}$ and ϕ is the angle between \vec{A} and \vec{B}, which of the following is true?
A) The angle between \vec{C} and $\vec{A}=0^{0}$
C) $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$
B) The magnitude of $\vec{C}=A B \cos \phi$
D) $-\vec{C}=\vec{A}$

Answer Key

1. B
2. C
3. A
4. C
5. C
6. A
7. B
8. A
9. A
10. A
11. C
12. A
13. A
14. A
15. A
16. D
17. A
18. D
19. A
20. B
21. A
22. B
23. A
24. C
25. C
26. A
27. A
28. A
29. A
30. B
31. C
32. A
33. C
