OPTICS PHYS 311

Dr Reem M. Al-Tuwirqi

POLARIZATION

LIGHT POLARIZATION

The direction of E is known as the polarization of the wave.

$$\vec{E} = E_o \sin(kz - \omega t) \hat{x}$$

$$\vec{\mathbf{B}} = \mathbf{B}_{o} \sin(k\mathbf{z} - \omega t) \hat{\mathbf{y}}$$

$$\vec{S} = \varepsilon_0 c E_0^2 \sin^2(kz - \omega t) \hat{z}$$

E is called the OPTICAL FIELD

The polaraization of an EM wave determines the direction of the force that the EM wave exerts on a charged particle in the path of the wave.

← Lorentz force law

$$\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})$$

LIGHT POLARIZATION

Linear polarization

t = 0 $\vec{E} = 0$ $t = \frac{\pi}{4\omega}$ $t = \frac{\pi}{4\omega}$ $t = \frac{\pi}{4\omega}$ $t = \frac{\pi}{4\omega}$ $t = \frac{5\pi}{4\omega}$ $\vec{E} = 0$ $\vec{E} = 0$

circular polarization

© 2007 Pearson Prentice Hall, Inc.

Random polarized, partial polarized light ← How to convert them to polarized light???

POLARIZATION

The polarization of light is a clear evidence of the transverse nature of light waves.

Any interaction of light with matter whose optical properties are asymmetrical along directions traverse to the propagation vector causes polarization.

POLARIZERS

How can we obtain polarized light?

DICHROISM

Dichroism is the selective absorption of light with E-vibration along a unique direction characteristic of the dichroic material.

physically anisotropic

A dichroic polarizer absorbes light in a certain direction and transmit light along a transverse direction orthogonal to the direction of absorption.

Transmission axis (TA)

How can we obtain polarized light?

© 2007 Pearson Prentice Hall, Inc.

How can we obtain polarized light?

How can we obtain polarized light?

Microwave: Grids

Optical wavelengths: Polaroid

POLARAZATION BY REFLECTION FROM DIELECTRIC SURFACES

How can we obtain polarized light?

$$E_s \rightarrow TE$$

$$E_p \rightarrow TM$$

$$n_1 \sin \theta_p = n_2 \sin \theta_t$$

$$\theta_p + \theta_t = 90^\circ$$

$$n_1 \sin \theta_p = n_2 \cos \theta_p$$

$$\theta_p \equiv \theta_B$$

$$\theta_p = \tan^{-1}(n_2/n_1)$$

Brewster's angle Polarizing angle

POLARAZATION BY REFLECTION FROM DIELECTRIC SURFACES

How can we obtain polarized light?

REFLECTION

$$\theta_p = \tan^{-1}(n_2/n_1)$$

Polarizing angle exist for both:

external reflection $(n_2>n_1)$ and internal reflection $(n_2< n_1)$

In an air-glass interface:

 $\theta_p = 56.3^{\circ}$ (for external reflection)

 $\theta_p = 33.7^{\circ}$ (for internal reflection)

POLARAZATION BY SCATTERING

How can we obtain polarized light?

SCATTERING

What is scattering??

Electron bound a nucleus ← dipole oscillator

The alternating electric field oscillates the dipole The response of the electron to the driving force depends on the driving frequency ω and the resonant frequency ω_0

Rayleigh scattering..

Scattering center's size..

$$P = \frac{e^2 \omega^4 r_o^2}{12\pi \epsilon_o c^3}$$

Why the sky is blue?? Why clouds are white??

Incoherent & coherent scattering centers

POLARAZATION BY SCATTERING

How can we obtain polarized light?

How can we obtain polarized light?

BIREFRINGENCE

Birefringent materials cause double refraction due to the existence of two different indices of refraction for a singel material.

How can we obtain polarized light?

BIREFRINGENCE

- → Anisotropy in the binding forces affecting electrons.
- → Anisotropy in the amplitude of electron's oscillations in response to a stimulating EM wave.
- → Anisotropy in absorption.

Stimulating frequencies fall within the absorption band of the material.

How can we obtain polarized light?

BIREFRINGENCE

The slope of the dispersion curve, dn/d∞, is (-) over a certain frequency interval. ← The absorption band in the material

For light propagating in the z-direction, anisotropic binding forces along the x- & y-direction gives different dispersion curves. $\leftarrow n_x \& n_y$

How can we obtain polarized light?

BIREFRINGENCE

The complex refractive index $\tilde{n} = n + ik$ ← (k is the extinction coefficient)

 $n_x = n_y \& kx \neq ky \leftarrow ideal dichoric$ $nx \neq ny \& kx = ky \leftarrow ideal birefringent$

How can we obtain polarized light?

OPTICAL ACTIVITY

 ρ : specific rotation

β: angle of rotation

L: light path

d: concentration

http://www.youtube.com/watch?v=2-stCNB8jT8&feature=related

http://www.youtube.com/watch?v=O3aITfU UvE&feature=related