

1- In the projectile motion, the y-component of the velocity at the maximum height is:
(a)Zero
(b) constant
(c) the maximum value
(d) Negative

2- In the projectile motion, the x-component of the velocity is:
(a) $v_{0} \sin \theta$
(b) $-v_{0} \sin \theta$
(c) $v_{0} \cos \theta$
(d) $-v_{0} \tan \theta$

3- In the projectile motion, the angle for the maximum range is:
(a) 90^{0}
(b) 75°
(c) 180°
(d) 45^{0}

4- In the projectile motion, the maximum range is:
(a) $\frac{v_{0}^{2}}{g}(\cos 2 \theta)$
(b) $\frac{v_{0}^{2}}{g}$
(c) $\frac{v_{0}}{g}$
(d) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$

5-A body move with a velocity $\vec{v}=2 \hat{i}-3 \hat{j} \mathrm{~m} / \mathrm{s}$ and acceleration $\vec{a}=2 \hat{i}+\hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The velocity after 2 s (in SI unit) is:
(a) $\vec{v}=6 \hat{i}-\hat{j}$
(b) $\vec{v}=6 \hat{i}+\hat{j}$
(c) $\vec{v}=-6 \hat{i}-\hat{j}$
(d) $\vec{v}=+6 \hat{i}+\hat{j}$

6-A ball is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. The y-component of the velocity is :
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

7- In question (6), the x-component of the velocity is:
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

8- In question (6), the maximum height is :
(a) 2870 m
(b) 287 m
(c) 2.87 m
(d) 28.7 m

9- In question (6), the range is:
(a) 19.88 m
(b) 198.8 m
(c) 1988 m
(d) 1.988 m

10- In question (6), the time of flight is:
(a) 0.015 s
(b) 0.15 s
(c) 15 s
(d) 1.5 s

11- A boy hold a rope of 30 cm long, from one end and the other end a stone, he rotate the stone in a horizontal circle with speed of $3 \mathrm{~m} / \mathrm{s}$. The acceleration of the stone is:
(a) $0.03 \mathrm{~m} / \mathrm{s}^{2}$
(b) $30 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(d) $300 \mathrm{~m} / \mathrm{s}^{2}$

12- A man stand on the ground level, if his mass is 80 kg , his weight is:
(a) 7.84 N
(b) 784 N
(c) 78.4 N
(d) 7840 N

13- A body of mass m, is hung by the ropes, at equilibrium, as shown in the figure.
The value of mass is:
(a) 950 kg
(b) 0.97 kg
(c) 9.5 kg
(d) 95 kg

14- The force needed to keep the mass $(\mathrm{m}=20 \mathrm{~kg})$ at rest , as shown in the figure, the force is:
(a) 98 N
(b) 980 N
(c) 9.8 N
(d) 0.98 N

15- In question (14), the normal force on the body is:
(a) 1.69 N
(b) 10.0 N
(c) 16.97 N
(d) 169.7 N

16- From the figure $m_{1}=20 \mathrm{~kg}$ and $\mathrm{m}_{2}=10 \mathrm{~kg}$. The force acting to accelerate the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$, the force is:
(a) 60 N
(b) 6.0 N
(c) 600 N
(d) 0.06 N

17- A racing car of mass 600 kg moves is decelerated by $4.5 \mathrm{~m} / \mathrm{s}^{2}$ using the brakes, the frictional force is:
(a) 225 N
(b) 0.225 N
(c) 2700 N
(d) 2.25 N

18- In the figure shown, if $\mathrm{m}_{1}=5 \mathrm{~kg}$ and the system move with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ and the tension in the rope was 10 N . The value of m_{2} is:
(a) 2.5 kg
(b) 1.28 kg
(c) 8.0 kg
(d) 50 kg

19- In question (18), the normal force on the m_{1} is:
(a) 0.49 N
(b) 490 N
(c) 4.9 N
(d) 49 N

20- A block of mass 10 kg , was pulled by a force 30 N , the block was going with a constant speed (as shown in the figure) on a rough surface. The friction force is:
(a) 25.98 N
(b) 259.8 N
(c) 2.598 N
(d) 0.2598 N

21- A space satellite moves in a circular orbit around the earth, at altitude of 530 km and with speed of $8.2 \mathrm{~km} / \mathrm{s}$. The acceleration of the satellite is: (the earth radius $6.37 \times 10^{6} \mathrm{~m}$)
(a) $0.974 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.74 \mathrm{~m} / \mathrm{s}^{2}$
(d) $5.5 \mathrm{~m} / \mathrm{s}^{2}$

22- In the figure shown two bodies are hung by a rope over a frictionless pulley. If $m_{1}=3 \mathrm{~kg}$ and $\mathrm{m}_{2}=1.5 \mathrm{~kg}$. the acceleration of the two bodes is:
(a) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.327 \mathrm{~m} / \mathrm{s}^{2}$
(c) $7.27 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.27 \mathrm{~m} / \mathrm{s}^{2}$

23- Two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force on m_{2} is
(a) 25 N
(b) 245 N
(c) 2450 N
(d) 5 N

24- In question 23, the gravitational force on m_{1} is:

(a) 0.98 N
(b) 9.8 N
(c) 980 N
(d) 98 N

25- A man of mass 80 kg stand on elevator, if the elevator is going upward with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the apparent weight of the man is:
(a) 944 N
(b) 80 N
(c) 44 N
(d) 9.8 N

26- In question (25), if the elevator is going with constant velocity $5 \mathrm{~m} / \mathrm{s}$, the weight of the man is:
(a) 80 N
(b) 7.84 N
(c) 784 N
(d) 78.4 N

27- A box stands on rough incline plane of 30°, when just about to move, the static coefficient of friction is:
(a) 1.00
(b) 5.8
(c) Zero
(c) 0.58

28- A box stands on rough incline plane of θ, the box is moving with a constant velocity, the frictional force is:
(a) $\mathrm{mg} \sin \theta$
(b) $m g \tan \theta$
(c) $\mathrm{mg} \cos \theta$
(d) mg

29- A box of mass 5 kg is sliding down with a constant velocity on a rough incline surface at an angle 20° with the horizontal. The kinetic friction coefficient is:
(a) 0.1
(b) 2.6
(c) 0.36
(d) 1.00

30- A car was going in a circular road with a radius of 50 m with constant velocity of $25 \mathrm{~m} / \mathrm{s}$, the static friction coefficient is:
(a) 0.816
(b) 0.1
(c) 1.00
(d) 1.27

Referring	العودة الى	Initial	ابتدائي	Hitting	اصطدم
Thrown	قف̇	altitude	إرنفاع عن سطح الارض	Magnitude	القيمة العددية
Vertically	عامودي	Elevator	مصع	Prevent	يمنع
Hangs	معلق	Circular	دائري	Apparent weigh	اللوزن الظاهرهي
Horizontal	أفقي	Rough	خشن	Gravitational	الجاذبية الارضية
Radius	نصف قطر	Coefficient	معامل	Frictional	الاحنكاك
Sliding	بيزلق	Static	السكوني	Floor	الارض
Upward	إلى اعلى	Kinetic	الحركي	Stand	بق

1- In the projectile motion, the y-component of the velocity at the maximum height is:
(a)Zero
(b) constant
(c) the maximum value
(d) Negative

2- In the projectile motion, the x-component of the velocity is:
(a) $v_{0} \sin \theta$
(b) $-v_{0} \sin \theta$
(c) $v_{0} \cos \theta$
(d) $-v_{0} \tan \theta$

3- In the projectile motion, the angle for the maximum range is:
(a) 90^{0}
(b) 75°
(c) 180^{0}
(d) 45°

4- In the projectile motion, the maximum range is:
(a) $\frac{v_{0}^{2}}{g}(\cos 2 \theta)$
(b) $\frac{v_{0}^{2}}{g}$
(c) $\frac{v_{0}}{g}$
(d) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$

5-A body move with a velocity $\vec{v}=2 \hat{i}-3 \hat{j} \mathrm{~m} / \mathrm{s}$ and acceleration $\vec{a}=2 \hat{i}+\hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The velocity after 2 s (in SI unit) is:
(a) $\vec{v}=6 \hat{i}-\hat{j}$
(b) $\vec{v}=6 \hat{i}+\hat{j}$
(c) $\vec{v}=-6 \hat{i}-\hat{j}$
(d) $\vec{v}=+6 \hat{i}+\hat{j}$

6-A ball is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. The y-component of the velocity is :
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

7- In question (6), the x-component of the velocity is:
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

8- In question (6), the maximum height is :
(a) 2870 m
(b) 287 m
(c) 2.87 m
(d) 28.7 m

9- In question (6), the range is:
(a) 19.88 m
(b) 198.8 m
(c) 1988 m
(d) 1.988 m

10- In question (6), the time of flight is:
(a) 0.015 s
(b) 0.15 s
(c) 15 s
(d) 1.5 s

11- A boy hold a rope of 30 cm long, from one end and the other end a stone, he rotate the stone in a horizontal circle with speed of $3 \mathrm{~m} / \mathrm{s}$. The acceleration of the stone is:
(a) $0.03 \mathrm{~m} / \mathrm{s}^{2}$
(b) $30 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(d) $300 \mathrm{~m} / \mathrm{s}^{2}$

12- A man stand on the ground level, if his mass is 80 kg , his weight is:
(a) 7.84 N
(b) 784 N
(c) 78.4 N
(d) 7840 N

13- A body of mass m , is hung by the ropes, at equilibrium, as shown in the figure.
The value of mass is:
(a) 950 kg
(b) 0.97 kg
(c) 9.5 kg
(d) 95 kg

14- The force needed to keep the mass ($\mathrm{m}=20 \mathrm{~kg}$) at rest , as shown in the figure, the force is:
(a) 98 N
(b) 980 N
(c) 9.8 N
(d) 0.98 N

15- In question (14), the normal force on the body is:
(a) 1.69 N
(b) 10.0 N
(c) 16.97 N
(d) 169.7 N

16- From the figure $m_{1}=20 \mathrm{~kg}$ and $\mathrm{m}_{2}=10 \mathrm{~kg}$. The force acting to accelerate the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$, the force is:
(a) 60 N
(b) 6.0 N
(c) 600 N
(d) 0.06 N

17- A racing car of mass 600 kg moves is decelerated by $4.5 \mathrm{~m} / \mathrm{s}^{2}$ using the brakes, the frictional force is:
(a) 225 N
(b) 0.225 N
(c) 2700 N
(d) 2.25 N

18- In the figure shown, if $\mathrm{m}_{1}=5 \mathrm{~kg}$ and the system move with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ and the tension in the rope was 10 N . The value of m_{2} is:
(a) 2.5 kg
(b) 1.28 kg
(c) 8.0 kg
(d) 50 kg

19- In question (18), the normal force on the m_{1} is:
(a) 0.49 N
(b) 490 N
(c) 4.9 N
(d) 49 N

20- A block of mass 10 kg , was pulled by a force 30 N , the block was going with a constant speed (as shown in the figure) on a rough surface. The friction force is:
(a) 25.98 N
(b) 259.8 N
(c) 2.598 N
(d) 0.2598 N

21- A space satellite moves in a circular orbit around the earth, at altitude of 530 km and with speed of $8.2 \mathrm{~km} / \mathrm{s}$. The acceleration of the satellite is: (the earth radius $6.37 \times 10^{6} \mathrm{~m}$)
(a) $0.974 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.74 \mathrm{~m} / \mathrm{s}^{2}$
(d) $5.5 \mathrm{~m} / \mathrm{s}^{2}$

22- In the figure shown two bodies are hung by a rope over a frictionless pulley.
If $m_{1}=3 \mathrm{~kg}$ and $\mathrm{m}_{2}=1.5 \mathrm{~kg}$. the acceleration of the two bodes is:
(a) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.327 \mathrm{~m} / \mathrm{s}^{2}$
(c) $7.27 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.27 \mathrm{~m} / \mathrm{s}^{2}$

23- In the figure, two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force on m_{2} is
(a) 25 N
(b) 245 N
(c) 2450 N
(d) 5 N

24- In question 23, the gravitational force on m_{1} is:

(a) 0.98 N
(b) 9.8 N
(c) 980 N
(d) 98 N

25- A man of mass 80 kg stand on elevator, if the elevator is going upward with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the apparent weight of the man is:
(a) 944 N
(b) 80 N
(c) 44 N
(d) 9.8 N

26- In question (25), if the elevator is going with constant velocity $5 \mathrm{~m} / \mathrm{s}$, the weight of the man is:
(a) 80 N
(b) 7.84 N
(c) 784 N
(d) 78.4 N

27- A box stands on rough incline plane of 30°, when just about to move, the static coefficient of friction is:
(a) 1.00
(b) 5.8
(c) Zero
(d) 0.58

28- A box stands on rough incline plane of θ, the box is moving with a constant velocity, the frictional force is:
(a) $\mathrm{mg} \sin \theta$
(b) $m g \tan \theta$
(c) $\mathrm{mg} \cos \theta$
(d) mg

29- A box of mass 5 kg is sliding down with a constant velocity on a rough incline surface at an angle 20° with the horizontal. The kinetic friction coefficient is:
(a) 0.1
(b) 2.6
(c) 0.36
(d) 1.00

30- A car was going in a circular road with a radius of 50 m with constant velocity of $25 \mathrm{~m} / \mathrm{s}$, the static friction coefficient is:
(a) 0.816
(b) 1.27
(c) 1.00
(d) 1.27

Referring	العودة الى	Initial	ابتدائي	Hitting	اصطدم
Thrown	قنف	altitude	إرنفاع عن سطح الارض	Magnitude	القيمة العددية
Vertically	عامودي	Elevator	مصع	Prevent	يمنع
Hangs	معلق	Circular	دائري	Apparent weigh	الوزن الظاهري
Horizontal	أفقي	Rough	خشن	Gravitational	الجاذبية الارضية
Radius	نصف قطر	Coefficient	م	Frictional	الاحنكاك
Sliding	ينزلق	Static	السكوني	Floor	الارض
Upward	إلى اعلى	Kinetic	الحركي	Stand	يق

