KING ABDULAZIZ UNIVERSITY

SCIENCE FACULTY

PHYSICS DEPARTMENT

Summer Term

Second Exam

Student Name: Student Number: Group:

CHOOSE THE CORRECT ANSWER:

- A Ball is thrown from ground level making an angle of 30° above the horizontal. The ball 1. speed is 980 m/s. What is the of Range the projectile?
 - a) $4.3 \times 10^3 \,\mathrm{m}$
- b) $8.5 \times 10^3 \,\mathrm{m}$
- c) $43 \times 10^3 \text{ m}$ d) $84.8 \times 10^3 \text{ m}$

- 2. Acceleration is defined as:
 - a) Rate of change of position with time.
 - b) Distance divided by time.
 - c) Rate of change of velocity with time.
 - d) A position of an object.
- Which of the following is a scalar quantity? 3.
 - a) Speed
- b) Velocity
- c) Displacement
- d) Acceleration

- 4. A force of 1N is:
 - a) 1 kg/s
- b) 1 kg · m/s
- c) $1 \text{ kg} \cdot \text{m/s}^2$
- d) $1 \text{ kg} \cdot \text{m}^2/\text{s}$
- 5. In which figure of the following the **Y- Component** of the net forces is Zero :

- 6. A block of mass m is connected to a block of mass M as shown, the normal force on block m is:
 - a) $F_N = mg T$
- b) $F_N = Mg T$

c) $F_N = mg$

d) $F_N = Mg$

- 7. In the diagram, if we cut the cord, the acceleration of mass M is:
 - a) a = zero

b) $a = -9.8 \text{ m/s}^2$

c) $a = 4.9 \text{ m/s}^2$

d) $a = 735 \text{ m/s}^2$

- 8. The coefficient of static friction $\mu_s = 0.4$ between a 5 kg block and horizontal surface. The maximum horizontal force that can be applied to the block before it slips is:
 - a) 10 N
- b) 19.6 N
- c) 5.5 N
- d) 8.7 N
- 9. A 40-N box rests on a rough horizontal floor. A 12 N horizontal force is then applied to it but the box does not move. What is the magnitude of the frictional force on the box?
 - a) 28N
- b) 52N
- c) 3.3N
- d) 12N

- 10. The two physical quantities measured in the same units are;
 - a) velocity and acceleration
- b) weight and force

c) mass and weight

- d) force and mass
- 11. An 800 N person is standing in an elevator. If the normal force on the person is 600 N, the person is;
 - a) at rest
- b) accelerating upward
- c) accelerating downward

- d) moving up at a constant speed
- From the diagram; the acceleration of the two blocks is; 12.
 - a) 1 m/s^2

b) 2 m/s^2

c) 30 m/s^2

d) 50 m/s^2

- If the position of an object changes from $\vec{r_1} = -2\hat{i} + 3\hat{j}$ to $\vec{r_2} = \hat{i} 2\hat{j}$, the displacement is: 13.
- a) $\Delta \vec{r} = 3\hat{i} + 5\hat{j}$ b) $\Delta \vec{r} = -\hat{i} 5\hat{j}$ c) $\Delta \vec{r} = -3\hat{i} 5\hat{j}$ d) $\Delta \vec{r} = 3\hat{i} 5\hat{j}$
- Two masses $m_1=2$ kg, $m_2=4$ kg situated on a frictionless horizontal surface are connected 14. by a string. A force F = 12 N is exerted on m₂ as shown in fig. The acceleration of the system is
 - a) 4 m/s^2

b) 3 m/s² d) 1 m/s²

c) 2 m/s^2

- The position of a particle is given by $\vec{r}(t) = 25t \hat{\imath} + 4 t^2 \hat{\jmath}$, the instantaneous *acceleration* at 15. t = 1 s is:
 - a) $(25\hat{i} + 8\hat{i})$ m/s²
- b) $(25\hat{i} + 8t\hat{i}) \text{ m/s}^2$
- c) $8 \hat{i} \text{ m/s}^2$
- d) 2 m/s^2

16.	A box, has mass of 4 kg, is pulled over a frictionless floor with a force of magnitude 40 N making an angle of 30° above the horizontal. The normal force is:							
	a) 39.2 N	b)	59.2 N		▼ 40N			
	c) 19.2 N	d)	40 N		4kg 30°			
17.	If the net forces applied to a 5.0 kg box is 10 N, then the magnitude of the acceleration of the box is:							
	a) 0.50 m/s^2	b) 2.0 m/s^2	c)	2.8 m/s^2	d) 10 m/s^2			
18.	The angle that gives the maximum range for a projectile is:							
	a) θ =40°	b) θ=44°	c) θ=90°	d) θ =45	0			
19.	A 400 N steel ball is suspended by a light rope from the ceiling. The tension in the rope							
	is: a) 400N	b) 800N	c) zero	d) 20	0N			
20.	Which law says that force is equal to mass times acceleration (F=MA)?							
	a) Newton's first law of motionb) Newton's third law of motionc) Newton's second law of motiond) none							
21								
21.	A particle's displacement is given by $r_x = 4t^2 + 2$ and $r_y = 2t^3$. The velocity components are: a) $v_x = 8t$, $v_y = 6t^2$ b) $v_x = -8t$, $v_y = 6t$							
	c) $v_x=8t+2$, $v_y=6t^2$ d) $v_x=4t$, $v_y=0$							
22.	As in Newton's second law, acceleration is always in the direction:							
	a) of the displacementb) of the final velocityc) of the initial velocityd) of the net force							
22								
23.	_	From the diagram; the magnitude of the normal force F_N acting on the box a) Mg b) Mg $\cos\theta$ F_N						
	c) Mg $\sin\theta$ d) M g $\tan\theta$							
24.	A car travels east at constant velocity. The net force on the car is;							
	a) east	b) west	•	c) up	d) zero			
25.	The gravitational force of earth acting on a 1 kg is							
	a) 8.9N	b) 9.8	BN	c) 980N	d) 1N			
26.	An 80 kg man stands on a scale in an elevator cab, if the cab accelerate upward with 1.2							
	m/s ² , the norn a) 80 N	nal force (F _N) is; b) 880	N	c) zero N	d) 680 N			
	Model A				,	Page 3		
	MOUELA					i age s		

16.

27.	Two forces act on a particle that moves with constant velocity, one of the forces is						
	$\vec{F}_1 = 3\hat{i} - 5\hat{j}$ N, what is the other force?						
	a) $\vec{F}_2 = 3\hat{i} - 5\hat{j}$	b) $\vec{F}_2 = 5\hat{i} - 8\hat{j}$	$c) \vec{F}_2 = -3\hat{i} + 5\hat{j}$	d) $\vec{F}_2 = -5\hat{i} + 8\hat{j}$			
28.	A 10 N horizontal force pushes a block of weight 50 N to make it move with constant						
	speed, the value of the coefficient of friction μ_k is;						
	a) 0.2	b) 0.4	c) 0.5	d) 0.10			

29. A man of mass 72 kg stands on a scale in an elevator cab. What does the scale read if the cab is not moving? a) 21 N b) 200 N c) 705.6 N d) 0

The y component of a vector \mathbf{A} ; (\mathbf{A}_{y}) is given by: 30. c) A cos θ a) A tan θ b) A sin θ d) A cot θ

31. A ball in projectile motion at the highest point, a) $v_v = 0$. and v_x = constant b) $v_y = constant$ and $v_x = 0$ c) $v_y = constant$ $v_x = constant$ and d) $v_v = 0$. $v_x = 0$

A girl weighs 489 N on Earth. Her mass is; 32.

a) 489 kg b) 9.8 kg c) 0 kg d) 50 kg

33. In Newton's third law the action and reaction forces are;

and

- a) Both forces are equal and opposite in direction.
- b) Both are in the same direction.
- c) The action force is greater than the reaction force.
- d) The reaction force is greater than the action force.

Model A Page 4