REMARK ON CHAPTER (4)

 $\mathbf{If} \ \dim(\ \mathbb{V}) = \mathbf{n}, \ \mathbf{and} \ \mathbf{S} = \{\underline{\mathbf{v}}_1,\underline{\mathbf{v}}_2,...,\underline{\mathbf{v}}_{\mathbf{k}}\} \subseteq \mathbb{V}. \ \mathbf{Then:}$

(1) k > n, then :-

==========

(i) S is L.D.

(ii) S	$\mathbf{may} \;\; \mathbf{span} \; \mathbb{V}$	$\begin{array}{l} \textbf{exp. } \mathbf{S} = \{(1, 2), (2, 3), (3, 5)\},\\ \textbf{since } \{(1, 2), (2, 3)\} \ \ \textbf{span} \ \mathbb{V} \end{array}$
	may can't span $\mathbb V$	exp. $S = \{(1, 2), (2, 4), (3, 6)\},\$ since there is no subset of S that span V

(2) k < n, then :-

(i) S can't span \mathbb{V} .

(ii) S	may be L.D.	exp. $S = \{(1, 2, 3), (2, 4, 6)\},\$ since $(2, 4, 6) = 2(1, 2, 3)$	
	may be L.I.	exp. $S = \{(1, 2, 3), (3, 5, 7)\},\$	
		$\mathbf{since}\ \underline{\mathbf{v_1}} \neq \underline{\mathbf{v_2}}.$	
*****	******	************	**********

(3) k = n, then by Theorem 12:-