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Lectures 6-10



1st Law

To every action there is always an equal reaction.

Newton's laws of Motion

In 1687, Isaac Newton laid down three fundamental laws of motion, 
which are:

Every body continues in its state of rest, or of uniform motion in 
a straight line, unless it is forced to change that state by forces 
impressed upon it.

The change of motion is proportional to the net force 
impressed and is made in the direction of that force.

The Law of 
Inertia

2nd Law

The Law of 
acceleration

3rd Law

The Law of 
action & reaction



Newton's laws of Motion



Newton's 1st law

This means that; in the absence of applied forces, matter simply 
continues in its current velocity state-forever.

The first law describes a common property of matter, known as 
inertia. 

What is Inertia? It is the resistance of a matter to change its state of motion.

- If we can neglect the effect of the earth’s rotations, a frame of 
reference fixed in the earth is an inertial reference frame.

Inertial Frames 
of Reference

-A mathematical description of the motion of a particle 
requires the selection of a frame of reference, or a set of 
coordinates according to which the position, velocity, and 
acceleration of the particle can be specified. 

- Uniformly moving frames of reference (i.e. those considered 
at 'rest' or moving with constant velocity in a straight line) 
are called inertial frames of reference.

- Newton’s laws are only applicable at inertial reference 
frames.
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Suppose we have two masses m1, m2 on a frictionless surface. 
Now imagine someone pushing the two masses together, and 
then suddenly releasing them so that they fly apart, achieving 
speeds v1 and v2. The ratio of the two masses can be expressed as;

Or;                      

The (-) appears because the final velocities v1

and v2 are in opposite directions. If we divide by 
t and take limits as t ~ 0, we obtain

Newton's Second and Third Laws

 The physical quantity that measures inertia is called mass.

 The more massive an object is, the more resistive it is to acceleration
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According to Newton's 2nd law, this “change of motion” is 
proportional to the force caused it; 

Defining the unit in the SI system, Newton's 2nd law can be 
expressed in the familiar form:

  avF mm
dt

d
net

Hence, equation (1) is equivalent to

Which is Newton's 3rd law, that states; two interacting bodies 
exert equal and opposite forces upon one another.

F1= -F2

Newton's 2nd Law

Newton's 3rd Law
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The product of mass and velocity, mv, is called linear momentum, P,   
hence, the 2nd law can be rewritten as;

which means that;
The time rate of change of an object’s linear momentum is 
proportional to the applied force, F. 

In other words, Newton's 3rd law implies that the total 
momentum of two mutually interacting bodies is a constant. 

Linear Momentum
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Newton's 2nd Law

Newton's 3rd Law

is equivalent to

F1= -F2

Or;



Rectilinear Motion

When a moving particle remains on a single straight line, the 
motion is said to be rectilinear. In this case, we can choose the x-
axis as the line of motion. The general equation of motion is then

Motion with 
Constant Force
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The simplest case is when F is constant. In this case a is constant ;

Integrating with respect to time:
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where v0 is the velocity and x0 is the position at t = 0.

From (1) & (2) we obtain;                                
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If the force is independent of velocity or time, then the 
differential equation for rectilinear motion is simply                   

Forces that Depend on Position

The Concepts of Kinetic & Potential Energy
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of the particle. Taking the integral of (4):
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Where W is the work done on the particle by the impressed force 
F(x). This work is equal to the change in the kinetic energy of the 
particle. 

The Work



Examples

Linear 
Momentum

A spaceship of mass M is traveling in deep space with velocity vi = 20 km/s

relative to the Sun. It ejects a rear stage of mass 0.2 M with a relative speed 

u = 5 km/s .What then is the velocity of the spaceship?

EXAMPLE 2.1.2

Pi=M vi

Since the total linear momentum is conserved, 

Then
Pi =Pf

Where,

Pf = 0.2 M U + 0.8 M vf

Let U be the velocity of the ejected rear stage and vf be the velocity of the 

ship after ejection. The total momentum of the system after ejection is then

But                           U = vf - u

which gives us

vf = vi + 0.2 u = 20 km/s + 0.2 (5 km/s) = 21 km/s

Then         0.2 M (vf  - u) + 0.8 M vf = M vi



Motion with 
Constant Force
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Using;                                2
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Consider a block that is free to slide down a smooth, frictionless plane that 

is inclined at an angle  to the horizontal. If the height of the plane is h

and the block is released from rest at the top (v0=0 ), what will be its speed 

when it reaches the bottom?
EXAMPLE 2.2.1

h

We choose a coordinate system whose 

positive x-axis points down the plane and 

whose y-axis points "upward,"  to the plane 

The only force along the x direction is 

the component of gravitational force, 

mg sin , and it is constant. Then

and

we obtain;                                
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Motion with 
Constant Force
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EXAMPLE 2.2.1

and

we obtain;                                
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Suppose that, instead of being smooth, the plane is rough and its 

kinetic coefficient of friction is k.  Then the net force in the x 

direction, is equal to mg sin - fk. Where; 

hence,

f = k N = k mg cos
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If the force is independent of velocity or time, then the 
differential equation for rectilinear motion is simply                   

Forces that Depend on Position

The Concepts of Kinetic & Potential Energy

2

2
1 mvT The quantity                       is called the kinetic energy

of the particle. Taking the integral of (4):
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Where W is the work done on the particle by the impressed force 
F(x). This work is equal to the change in the kinetic energy of the 
particle. 

The Work
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The function V(x) is called the potential energy. Hence;

E is known as the total mechanical energy of the particle. 

Let us define another function V(x) such that; 
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Or;

1- The sum of the kinetic and potential energies E is constant 
throughout the motion of the particle.          

Note:

3- when v=0T=0  V(x)= E . This point known as 
“the turning point” 

2- The force is a function only of the position x. Such a 
force is said to be conservative.         



Examples

EXAMPLE (2.3.1)

Then

The Concept of Potential Energy
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The motion of a freely falling body is an example of conservative 
motion. In this case:

Free Fall
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We can choose C = 0, which means that V = 0 when x = 0. 
The energy equation is then

For instance, let the body be projected upward with initial speed v0

from the origin x=0. These values give;

so;
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The turning point of the motion, which is in this case 
the maximum height, is given by setting v = 0. 
This gives 
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Other Solution
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Morse Function

EXAMPLE (2.3.3): Show that:
1- x0 is the separation of the two atoms at equilibrium, i.e. 
when the potential energy function is minimum.
2- and that V(x0)= -V0 .

Substituting in the main equation, the value of the min V(x) can be 
found as; 

V(x0)=-V0

The potential energy of a vibrating diatomic molecule as a function 
of x is given by;

V(x) is min when its derivative (w.r.t) x is zero;

x0

-V0

x

V(x)

Solution



Forces that Depend on Time

The Concept of Impulse

The Impulse

Let us take the time integral over the interval t1 to t2 , the time 
during which the force is considered to act, then we have

Forces of extremely short duration in time, such as those exerted 
by bodies undergoing collisions, are called impulsive forces.

If we confine our attention to one body, or particle, the 
differential equation of motion is

d(mv) = F dt.

The time integral of the force is the impulse. It is usually 
denoted by the symbol P.

  PdtFmv

t

t

 
2

1

 

1- The work is equal to the change in the energy of the particle.          Note:

2- The impulse is equal to the change in the momentum of the 
particle.          
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Forces that Depend on Velocity

The force acts on a body is often a function of its velocity. 
For example, the viscous resistance exerted on a body moving 
through a fluid depends on its velocity. In such case, the differential 
equation of motion may be written in either of the two forms

Fluid Resistance and Terminal Velocity
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Here F0 is any constant force that does not depend on v.

Since, F(v) is a complex function and must be found through 
experimental measurements, it can be replaced by the following 
approximation :                              

where c1 and c2 are constants whose values depend on the 
size and shape of the body. 



For spheres in air, 

c1 = 1.55  10-4D     &      c2 = 0.22 D2

where D is the diameter of the sphere in meters.
For small v the linear term in F(v) can be used , 
while the quadratic term dominates at large v.
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To decide whether the case is linear or quadratic, the ratio of the 
latter to the former usually used;

If the value of v will make the ratio exceeds 1 then it is a 
quadratic case, otherwise, it is a linear one.  

Linear 
or 

Quadratic ?



Suppose a block is projected with initial velocity v0 on a smooth 
horizontal surface and that there is air resistance such that the 
linear term dominates. 

dt

dv
mvc  1

By integrating,

Horizontal Motion through a Fluid

(Exp.2.4.1)

Linear Resistance

Hence,            F0 = 0,     and      F(v) = -c1v.

The differential equation of motion is then;
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Solving for v as a function of t gives;                                    

A second integration gives                             

Showing that after a long time (t~ ) the block approaches 
a limiting position given by; 

or 

10lim / cmvx 



Horizontal Motion through a Fluid

(Exp.2.4.2)

Quadratic Resistance The differential equation of motion in this case is;
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2

Similarly we can get v and the position x as a function of time. 

Check the Book’s results Using Maple Exercise



For an object falling vertically in a resisting fluid, the force F0 in 
this case, is the weight of the object, -mg. For the linear case of 
fluid resistance, the differential equation of motion is;
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Vertical Fall through a Fluid

Terminal Velocity

1- Linear Case
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Integrating and solving for v, we get                              

After a sufficient time (t  >> m/c1), the velocity approaches a 
limiting value ( -mg/c1). This limiting velocity of a falling body is 
called the terminal velocity (vt). Hence the terminal speed is;

The value of vt/g is known as the characteristic time of the motion 
(). I.e , 



Note: At the velocity vt the force of resistance is just equal and opposite 
to the weight of the body so that the net force is zero, and so 
the acceleration is zero.
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In this case F(v)  v2 and the differential equation of motion is;

Similarly, the terminal speed is ;

And the characteristic time is;

2- Quadratic case:

See (Exp.2.4.3)


