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If g << w0 , the resonant frequency wr , the freely running damped 
oscillator frequency wd , and the natural frequency w0 of the 
oscillator are essentially identical. I.e;

wr  wd  w0

When the damping is weak:

If g >> w0
2/2 , no amplitude resonance occurs, because the 

amplitude then becomes a totally decreasing function of w0

When the damping is strong:
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Amplitude at the Resonance Peak

The amplitude at the resonant frequency, which we call Amax , 
is



Sharpness of 
the Resonance
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Let us consider the case of weak damping (wr  wd w0). 
Then, the expression for steady-state amplitudeis

The above equation shows that when |w0–w|=g , or equivalently, if
w = w0  g ,then
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This means that 2g is a measure of the width of the resonance 
curve w at half-energy points. 

since the quality factor Q for weak damping case is given by;

Thus, the width of the resonance curve w is;                                



The phase difference between the applied driving force and the 
steady-state response is given by 

Phase Angle
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The plot of this relation shows  as a function of the driving 
frequency w.  

1- For small w :
the phase difference is zero
( =0) and remains small. So; 
the response is in phase with 
the driving force.

2- Near the resonance frequency:
Actually at w = wr, the phase angle  increases to p /2 and so; 
the response is 90o out of phase at this frequency. 

3- For large values of w:
the value of  approaches p, hence; the motion of the system is 
just 180o out of phase with the driving force



There is an exact analogy between a moving mechanical system of 
masses and springs with frictional forces and an electric circuit
containing; inductance, capacitance, and resistance. 

Electrical-Mechanical Analogs

Mechanical Electrical

Displacement            x Charge                                q

Velocity                 dx/dt Current                           dq/dt

Mass                        m Inductance                         L 

Stiffness constant   k Reciprocal of capacitance  C-1

Damping constant     c Resistance                           R

Force                       F Potential difference            V
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Consider the motion of a particle attached to a set of elastic springs as 
shown in the Figure. This is the three-dimensional generalization of 
the linear oscillator studied earlier. 

The Harmonic Oscillator in 2D and 3D

The differential equation of the motion simply can be expressed as;



2D Isotropic Oscillator:

First, we will consider the motion of the isotropic oscillator, in 
which the restoring force is independent of the direction of the 
displacement. In the case of motion in a single plane, 2D, we get is 
two equations of motion;
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These are separated, so their solutions can be in the form                

With 

The constants A, B, , and  are determined from the initial conditions .

To find the equation of the path, we eliminate the time t between 
the x & y equations.
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We then have a quadratic equation in x and y;

Recall: The general quadratic equation;
ax2 + bxy + cy2 + dx + ey = f                    

represents;
An ellipse,          if    b2 - 4ac < 0

A parabola,         if    b2 - 4ac = 0

or A hyperbola,        if    b2 - 4ac > 0
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In our case the discriminant 

is equal to -(2sin/AB)2, which is 

negative, so the path is an ellipse.

If the phase difference  is equal 

to p/2, then the equation of the path 

reduces to the equation

which is the equation of an ellipse whose axes coincide with the 
coordinate axes.



If the phase difference  is equal 0 or p, then the equation of the 
path reduces to that of straight line;
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Similarly for 3D isotropic oscillator the motion will take place 
totally in a single plane, and the path of the particle in that 
plane is an ellipse. 
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If the magnitudes of the components of the restoring force depend
on the direction of the displacement, we have the case of the non-
isotropic oscillator. The differential equations for this case can be 
written as; 

Here we have three different frequencies of oscillation, w1 , w2 and 
w3 , and the motion is given by the solutions

3D Non-isotropic Oscillator:

The resulting oscillation of the particle lies completely within a 
rectangular box (whose sides are 2A, 2B, and 2C) centered on the 
origin. 



If w1 , w2 and w3 are commensurate-that is, 
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Where n1, n2 and n3 are integers, the path is closed, i.e. the 
particle returns to its initial position and the motion is repeated. 
Such a path called Lissajous figure.

Commensurate
oscillator

w1 : w2   1:2          w1 : w2    3:2         w1 : w2    9:8



On the other hand, If w1 , w2 and w3 are not commensurate, the 
path is not closed and the path will completely fill the rectangular 
box.

Non-Commensurate
oscillator
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For the general 3D case, it is easy to verify that

If k1 =k2 = k3 = k, we have the isotropic case, and                       

The total energy in the isotropic case then given by;

Energy Considerations
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Motion of Charged Particles in Electric
& Magnetic Fields

When a charged particle is surrounded by other electric charges, it 
will experience a force. This force F is caused by the electric field E, 
which arises from these other charges. We write

F = qE
where q is the electric charge. The equation of motion of the 
particle is then

Let us consider a case of a uniform constant electric field
which is directed along the z-axis. Then Ex = Ey = 0, and E = Ez. 
The differential equations of motion of a particle of charge q
moving in this field are then

.00 cons
m

qE
zyx z                           

These are of the same form as those for a projectile in a 
uniform gravitational field.
Therefore, the path is a parabola, if vx and vy if are not both zero
initially. Otherwise, the path is a straight line, as with a body falling 
vertically.
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According to the electromagnetic theory, if E is due to static charges 
then;

This means that motion in such a field is conservative, and 
that there exists a potential function F such that;

Then, the force F caused by the electric field E may be rewritten as;

Then, the potential energy of a particle of charge q in such a field is 
then qF. The total energy, hence, is constant and is equal to                                     
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In the presence of a static magnetic field B, called the magnetic 
induction, the force acting on a moving particle is conveniently 
expressed by means of the cross product, namely, 

where v is the velocity and q is the charge.
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This equation states that the acceleration of the particle is 
always  to the direction of motion. This means that the
tangential component of the acceleration is zero, and so the 
particle moves with constant speed. 

The path is a helix , and if there is no component of the velocity in 
the z direction, the path is a circle.

The differential equation of motion of a particle 
moving in a purely magnetic field is then



When a moving particle is restricted geometrically, i.e. it must 
stay on a certain definite surface or curve, the motion is said to be
constrained. 

Constrained Motion of a Particle

Examples of constrained motion:
- A piece of ice sliding around a bowl. (one-sided constraint)
- A bead sliding on a wire. (complete constraint)
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A particle is placed on top of a smooth sphere of radius a. If the 
particle is slightly disturbed, at what point will it leave the 
sphere?

The forces acting on the particle are the downward force of gravity 
mg and the reaction R of the spherical surface. The equation of 
motion is                               

According to the chosen coordinate the potential 
energy is then mgz, and the energy equation is;

EXAMPLE 4.6.1

Solution:



mgamgzmv 2

2
1

 zagv  22

R
a

z
mgRmg

a

mv
 cos

2

 az
a

mg
R 23 

az
3
2

But from the initial conditions (v = 0 for z = a) we have
E = mga, so; 

As the particle slides down, its speed is given by;

Hence,

Thus, R vanishes when

At this point the particle leaves the sphere. 



Recall: Uniformly moving reference frames (e.g. those 
considered at 'rest' or moving with constant velocity in a straight 
line) are called inertial reference frames.

Accelerated Coordinate Systems: 

Sometimes it is necessary, to employ a coordinate system that is 
not inertial. 

The position vector of a particle P is denoted by r in the fixed 
system and by r' in the moving system. The displacement OO' of the 
moving origin is denoted by R0. Thus, from the triangle OO'P, we 
have

r = R0 + r' 

Taking the first and second time 
derivatives gives

v = V0 + v '                                  
a = A0 + a'

in which V0 and A0 are, respectively, the velocity and acceleration 
of the moving system, and v' and a' are the velocity and 
acceleration of the particle in the moving system.



If the moving system is not accelerating, i.e. it is also inertial, so 
that A0 = 0, then

a = a'

In this case we cannot specify a unique coordinate system, because 
Newton's laws will be the same in both systems.
For example, Newton's second law in fixed system F = ma becomes 
F' = ma' in the moving system. 

On the other hand if the moving system is accelerating, then 
Newton's second law becomes

F = mA0 + ma'

or

F - m0 = F'

where (-mA0) is known as the inertial term or inertial force. Such 
"force" is not due to interactions with other bodies; rather, it 
happens as a result of the acceleration of the reference system



Rotating Coordinate Systems

Assume that the axes of the both coordinate systems have a 
common origin. Let the rotation of the rotated system takes place 
about some specific axis of rotation, whose direction is designated 
by a unit vector, n. 

The angular velocity of the rotating system then is;
w wn 

The direction of the velocity vector is given by the right-hand rule. 

Because the coordinate axes of the two systems have the 
same origin, the vector r in the fixed system equals the vector 
r' in the rotating system, that is,

r = r'

or;

ix + jy+ kz = i'x' + j'y'+ k' z' 



When we differentiate with respect to time to find the velocity, we 
must keep in mind the fact that the unit vectors i', j', and k' are 
not constant. Thus, we can write the velocity vector v in the fixed 
system as;                        
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From the definition of the cross product, we can write;

and         

Hence;

And so,  the velocity can be rewritten as
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Taking the first time derivatives gives the acceleration in the fixed 
system in terms of the position, velocity, and acceleration in the 
rotating system;

If the moved system is undergoing both translation and rotation, 
the general equations for transforming from a fixed system to a 
moving and rotating system will be:

And;

The term 2w  v' is known as the Coriolis acceleration, which 
appears whenever a particle moves in a rotating coordinate system 
except when the velocity v' is parallel to the axis of rotation.

Coriolis 
acceleration



The term w(w r') is called the centripetal acceleration. 
which is the result of the particle being carried around a circular 
path in the rotating system. It is always directed toward the 
axis of rotation and is perpendicular to the axis as shown in 
the figure.

rω The term              is called the 
transverse acceleration, 
because it is perpendicular to the 
position vector r'. It appears 
whenever the rotating system has 
an angular acceleration, i.e. if the 
angular velocity vector is 
changing in either magnitude 
or direction, or both. 

Centripetal 
acceleration

Transverse 
acceleration



Dynamics of a Particle in a Rotating System
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The equation of motion of a particle in a noninertial frame of 
reference is ;
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rω  The force –m is called the transverse force, because it is 
perpendicular to the position vector r'. It is present only if there 
is an angular acceleration (or deceleration) of the rotating 
coordinate system.

 The force -2mwv' is the Coriolis
force, which appears whenever a
particle moves in a rotating
coordinate system. Its direction is
always perpendicular to v'.

 The force - mw(w r') is the centrifugal force, which is the 
result of the particle being carried around a circular path in the 
rotating system. It is directed outward away from the axis of 
rotation and is perpendicular to that axis.



Effects of Earth's Rotation

 Nevertheless, it is the spin of the Earth that makes the 
equatorial radius is some 21 km greater than the polar radius, i.e. 
equatorial bulge.

 Consider a coordinate system that is moving with the Earth. 
Because the angular speed of Earth's rotation is 2p radians per day, 
the effects of such rotation is relatively small. 

Static Effects: 
The Plumb line

Let us describe the motion of the plumb bob in a local frame of
reference whose origin is at the position of the bob. Our frame of
reference is attached to the surface of the Earth, so it is
undergoing translation as well as rotation.

 The translation of the frame takes place along a circle whose 
radius is r = re cosl, where re is the radius of the Earth and l is the 
geocentric latitude of the plumb bob. Hence;                               
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Its rate of rotation is w, the same as that of the Earth about its 
axis. Let us now examine the terms of 
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zero, because v'= 0.

zero, because the bob is at rest 

zero, because w is constant.

Coriolis force 

transverse force 

centrifugal force zero, because r'= 0

Thus,

F – mA0 = 0     

In other words, the bob does not hang on a line pointing toward the 
center of the Earth because the inertial force –mA0 throws it 
outward, away from Earth's axis of rotation. The magnitude of this 
force is;

lw cos2
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The tension T in the string balances out the real gravitational
force mg0 and the inertial force –mA0, i.e;

We can easily calculate the value of the
angle e. From the Figure we have;

As can be seen the inertial reaction –mA0 causes the direction of
the plumb line to deviate by a small angle e away from the
direction toward Earth's center, and

mg = mg0 – mA0 
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or, because e is small

Thus, e vanishes at the equator (l  0) and the poles (l 90). The
maximum deviation of the direction of the plumb line from the
center of the Earth occurs at l  45° where;
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Two hundred years later, Newton discovered that each of Kepler's 
laws can be derived using Newton's laws of motion and the law of 
gravitation. 

In fact, Kepler's laws provided one of the foundations of Newton’s 
theory of universal gravitation. 

By trial and error, Kepler discovered three observed laws that 
accurately described the motions of all planets .

Kepler’s laws and the motion of planets 

One of the great intellectual events of the 16th and 17th centuries was 
the threefold realization; 
1- that the earth is also a planet, 
2- that all planets orbit the sun, 
3- and that the apparent motions of the planets as seen from the 
earth can be used to determine the orbits of the planets precisely.

The first and second of these ideas were published by 
Nicolaus Copernicus in 1543. The determination of planetary 
orbits was carried out between 1609 and 1619 by the German 
astronomer and mathematician Johannes Kepler. 

http://upload.wikimedia.org/wikipedia/commons/d/d4/Johannes_Kepler_1610.jpg


First law:
Law of Ellipses

Each planet moves in an elliptical orbit, with the sun at 
one focus of the ellipse.

Main properties of the ellipse:

 The longest dimension 2a is the major axis, with half-length a

known as the semi-major axis. 

 S and S' are the foci . The sun is at S, and the planet is at S'

 The distance of each focus from 

the center of the ellipse is ea, where e
is a dimensionless number between 0 
and 1 called the eccentricity. If e = 0, 
the ellipse is a circle. The actual orbits 
of the planets are somewhat circular; 
their eccentricities range from 0.007

for Venus to 0.248 for Pluto. The 
earth's orbit has e = 0.017

 The point in the planet's orbit closest to the sun is the perihelion, 

and the point most distant from the sun is the aphelion.



Second law:
Law of Equal 

Areas

A line from the sun to a given planet sweeps out equal 
areas in equal times.

In a small time interval dt, the line from the 
sun S to the planet P turns through an angle 
d. The area swept out is the

dA = ½ r2 d .

The rate at which area is swept out, dA/dt, is 
called the sector velocity:

dt

d
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The real meaning of Kepler's second law is that the sector velocity 
has the same value at all points in the orbit. When the planet is 
close to the sun, r is small and d/dt is large; when the planet is far 
from the sun, r is large and d/dt is small.



Third law:
Harmonic Law

The ratio of the squares of the periods for two planets 
is equal to the ratio of the cubes of their semi-major 
axes.

This law can be expressed as; 
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convenient unit of measurement for periods is in Earth years, 
and a convenient unit of measurement for distances is the 
average separation of the Earth from the Sun, which is 
termed an astronomical unit and is abbreviated as AU. 
If these units are used in Kepler's 3rd Law, the constant in 
the previous equation are numerically equal to unity and it 
may be written in the simple form: 
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This Law (unlike the first two) ties together the motions of 
different planets.

Mercury

Venus

Earth

Mars

Jupiter

Saturn

0. 387       0. 241          1. 002

0. 723        0.615           1.001

1. 000        1.000          1.000

1. 524       1. 881          1. 000

5. 203       11. 862        0. 999

9. 534        29.456        1.001

a in AU T in yrs T2/a3
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T
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Kepler’s 3rd law can be then rewritten as



EXAMPLE (6.6.1):

With T measured in years and a in astronomical units, we have

T2 = a3= (4)3 = 64 yrs2     T = 8 yrs

Find the period of a comet whose semi-major axis is 4 AU.

Solution:

Comet Halley moves in an elongated elliptical orbit around the sun. 
At perihelion, the comet is 8.75  107 km from the sun; at aphelion it 
is 5.26  109 km from the sun. Find the semi- major axis, eccentricity, 
and period of the orbit.

Example : 
Comet Halley

Solution:
- The length of the major axis is;

2a = 8.75  107 + 5.26  109

So;                    a =  2.67  109 km

- Since the comet-sun distance at perihelion is given by

a - ea = a (1- e) = 8.75  107

Then;                                e = 0.967
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Newton’s Law of Gravitation

 During his study of the motions of 

the planets and of the moon, Newton 
found  the fundamental charter of the 
gravitational attraction between any 
two bodies. 

 Builds upon the idea that any curved motion is due to 

some FORCE that provides the Centripetal acceleration , 
and for the Uniform Circular Motion this acceleration is:
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Kepler’s Third Law Provides a key;
T2 = k R3

• But, period = T = 2π R / v 4π2 R2 / v2 = k R3

• Therefore, v2 = 4π2 / k R

• Substituting this form for v2 into Newton’s 2nd Law gives:

a = v2 / R

F = m v2 / R

Then, the Centripetal Force must be given by something like;

Circular motion

http://images.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Newton%27s_tree,_Botanic_Gardens,_Cambridge.JPG/452px-Newton%27s_tree,_Botanic_Gardens,_Cambridge.JPG&imgrefurl=http://commons.wikimedia.org/wiki/Image:Newton%27s_tree,_Botanic_Gardens,_Cambridge.JPG&h=599&w=452&sz=96&hl=en&start=56&tbnid=WKrVQX-pMnTBNM:&tbnh=135&tbnw=102&prev=/images%3Fq%3DNewton%25E2%2580%2599s%2BLaw%2Bof%2BGravitation%26start%3D40%26gbv%3D2%26ndsp%3D20%26hl%3Den%26sa%3DN


 Consider Newton’s 3rd Law, there must be an equal force also 

exert on the Sun by the planet, but in the opposite direction. 

The only form of the law that is symmetric in the two masses is: 

2R

m
GMF 

Where M and m are the mass of the sun and mass of the planet, R
is the distance between them and G is a universal constant. The 
numerical value of G (in SI units ) is

G =  6.6710-11 N.m2/kg2

 This is the force that the Sun must exert on a planet of 

mass m, orbital radius R, in order that the planet obeys 
Kepler’s Laws in the circular motion.
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So, Kepler’s constant k is equal to; 



 Newton, then, generated this result for all bodies in his 

famous law of gravitation which may be stated as follows: 

Every particle of matter in the universe attracts every 
other particle with force (Fg) that is directly 
proportional to the product of the masses (m1, m2) of 
the particles and inversely proportional to the square 
of the distance between them (r).

2

21
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 This law tells us that if the distance r is doubled, the force 
decreases by a factor of four, and so on. 

 Even when the masses of the particles are different, the two 
interaction forces have equal magnitude.
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 The earth's gravitational force on a body of mass m at any 
point outside the earth is given by ; Fg = GmEm/r2, where mE is the 
mass of the earth and r is the distance of the body from the 
earth's center. Therefore, we can express the gravitational 
potential energy (U) in more general form as;

gravitational 
potential energy


