Chapter 5: Permutation Groups

Dr. Jehan Al-bar

### Chapter 5: Permutation Groups

Dr. Jehan Al-bar

December 3, 2010



#### Chapter 5: Permutation Groups

Dr. Jehan Al-bar

We study Certain groups of functions, known as permutation groups from a set A to itself.

# Definition of Permutation on A, Permutation Group of A.

Chapter 5: Permutation Groups

> Dr. Jehar Al-bar

#### Definition

A permutation of a set A is a function from A to A that is both one-one and onto. A permutation group of a set A is a set of permutations of A that forms a group under function composition.

# Definition of Permutation on A, Permutation Group of A.

Chapter 5: Permutation Groups

Dr. Jehan

In this chapter we consider the set A to be finite, and we set  $A = \{1, 2, 3, ..., n\}$  for positive integer n.

### **Examples**

#### Chapter 5: Permutation Groups

Dr. Jehan Al-bar **1** A permutation  $\alpha$  on the set  $\{1,2,3,4\}$  is defined to be  $\alpha(1)=2,\alpha(2)=3,\alpha(3)=1,\alpha(4)=4.$  We write  $\alpha$  in array form

$$\alpha = \left[ \begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{array} \right]$$

**2** A permutation  $\beta$  on the set  $\{1, 2, 3, 4, 5, 6\}$  is defined to be  $\beta(1) = 5$ ,  $\beta(2) = 3$ ,  $\beta(3) = 1$ ,  $\beta(4) = 6$ ,  $\beta(5) = 2$ ,  $\beta(6) = 4$ , and we write

$$\beta = \left[ \begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 6 & 2 & 4 \end{array} \right]$$



#### Composition of Permutations

Chapter 5: Permutation Groups

> Dr. Jehar Al-bar

> > We express the composition of permutations in array notation, and we carry it out from **right to left** going from top to bottom, then again from top to bottom, as we see in the next example.

#### Composition of Permutations

Chapter 5: Permutation Groups

> Dr. Jehan Al-bar

#### Example

Let 
$$\sigma = \left[ \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{array} \right]$$
 and  $\gamma = \left[ \begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{array} \right]$  Then

$$\gamma \sigma = \left[ \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{array} \right] \left[ \begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{array} \right]$$

On the right array we have 2 under 1, and on the left array we have 4 under 2, so in the composition we must have 4 under 1, and so on. in function composition language we write  $(\gamma\sigma)(1)=\gamma(\sigma(1))=\gamma(2)=4$ , hence  $\gamma\sigma$  sends 1 to 4. Following in this manner we have

$$\gamma \sigma = \left[ \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 3 & 5 \end{array} \right]$$

# Symmetric Group $S_n$

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Let  $A = \{1, 2, 3, ..., n\}$ . Then the set of all permutations of A under the function composition is called the *symmetric group of degree n* and is denoted by  $S_n$ . Elements of  $S_n$  are on the form

$$\alpha = \left[ \begin{array}{cccc} 1 & 2 & \dots & n \\ \alpha(1) & \alpha(2) & \dots & \alpha(n) \end{array} \right].$$

The order of  $S_n = n!$ 

# Symmetric Group S<sub>3</sub>

Chapter 5: Permutation Groups

> Dr. Jehan Al-bar

#### Example

Let  $S_3$  denote the set of all one-one and onto functions from  $\{1,2,3\}$  to itself. Then  $S_3$  under function composition, is a group with 6 elements. They are

$$\varepsilon = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \alpha = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \alpha^2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix},$$
$$\beta = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}, \alpha\beta = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \alpha^2\beta = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}.$$

We note that  $\beta \alpha \neq \alpha \beta$ , so  $S_3$  is non-Abelian group.

#### Cycle Notation

Chapter 5: Permutation Groups

Dr. Jehan Al-bar The cycle notation is another way to specify permutations. Some important properties of the permutation can easily be determined when cycle notation is used. Let

$$\alpha = \left[ \begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 6 & 5 & 3 \end{array} \right]$$

In cycle notation  $\alpha = (12)(346)(5)$ , and for

$$\beta = \left[ \begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 6 & 2 & 4 \end{array} \right]$$

we have  $\beta = (1523)(46)$  or  $\beta = (46)(3152)$ .

An expression of the form  $(a_1, a_2, ..., a_m)$  is called a cycle of length m or an m-cycle.



## Multiplication of Cycles

#### Chapter 5: Permutation Groups

Dr. Jehan Al-bar

We think of a cycle as a permutation that fixes any symbol not appearing in the cycle. For example, the cycle (46) represents  $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$ 

the permutation 
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{bmatrix}$$
.

Bearing this in mind, when multiplying cycles we think of them as permutations given in array form. For example, in  $S_8$ , let  $\alpha=(13)(27)(456)(8)$  and  $\beta=(1237)(648)(5)$ , then  $\alpha\beta=(13)(27)(456)(8)(1237)(648)(5)$ 

## A disjoint Cycle Form

Chapter 5: Permutation Groups

> Dr. Jehan Al-bar

In this form the various cycles have **no number in common**. Because function composition is done from right to left, and each cycle that does not contain a symbol fixes that symbol, we see that (5) fixes 1, (648) fixes 1, (1237) sends 1 to 2, (8) fixes 2, (456) fixes 2, (27) sends 2 to 7, and (13) fixes 7. So the net effect of  $\alpha\beta$  is to send 1 to 7. So  $\alpha\beta = (17....)$ . Repeating the process starting with 7, we have  $7 \rightarrow 7 \rightarrow 7 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 3$ , so that  $\alpha\beta = (173...)$ . Ultimately, we have  $\alpha\beta = (1732)(48)(56)$ . The important thing when multiplying cycles is to keep moving from one cycle to the next from right to left.

## A Cycle Notation, Disjoint cycle form

Chapter 5: Permutation Groups

> Dr. Jehan Al-bar

#### Example

Let 
$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{bmatrix}$$
 and  $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{bmatrix}$   
In cycle notation  $\alpha = (12)(3)(45)$  and  $\beta = (153)(24)$ , and  $\alpha\beta = (12)(3)(45)(153)(24)$ . In disjoint cycle form,  $\alpha\beta = (14)(253)$ . To convert  $\alpha\beta$  back to array form, we observe that  $(14)$  means 1 goes to 4 and 4 goes to 1,  $(253)$  means  $2 \to 5 \to 3 \to 2$ .

It is preferred not to write the cycle with one entry. The missing element is mapped to itself. For instance, the previous  $\alpha$  cab be written as  $\alpha = (12)(45)$ 



## The Identity Permutation in Cycle Form

Chapter 5: Permutation Groups

> Dr. Jehan Al-bar

> > The identity permutation consists only of cycles with one entry, so we write just one cycle. For example,

$$\varepsilon = \left[ \begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{array} \right]$$

can be written as  $\varepsilon = (5)$  or  $\varepsilon = (3)$ .

Remember that missing elements are mapped to themselves.