Sample Problem JF¥Y

A 2.0 kg sloth hangs 5.0 m above the ground (Fig. 8-6).

(a) What is the gravitational potential energy U of the
sloth—Earth system if we take the reference pointy = 0
to be (1) at the ground, (2) at a balcony floor that is
3.0 m above the ground, (3) at the limb, and (4) 1.0 m
above the limbh? Take the gravitational potential energy
to be zero at y = 0.

palitadll Once we have chosen the reference point

for y = 0, we can calculate the gravitational potential
energy U of the system relative to that reference
point with Eq. 8-9.

Calculations: For choice (1) the sloth is at y = 5.0 m,
and

U = mgy = (2.0 kg)(9.8 m/s*)(5.0 m)

=981 ( Answer)
For the other choices, the values of U are
(2) U=mgy =mg(2.0m) =39],
(3) U=mgy =mg(0) =01,
(4) U=mgy=mg(—1.0m)
=—19.67=—201. (Answer)

(b) The sloth drops to the ground. For each choice of
reference point, what is the change AU in the potential
energy of the sloth - Earth system due to the fall?

The change in potential energy does not

depend on the choice of the reference point for y = 0,
instead, it depends on the change in height Ay.

(1) (2) () (4)

FIG. 8-6 Four choices of reference point y = 0. Each y axis is
marked in units of meters. The choice affects the value of the
potential energy U/ of the sloth—Earth system. However, it
does not affect the change AU in potential energy of the sys-
tem if the sloth moves by, say, falling.

Calculation: For all four situations, we have the same
Ay = —5.0 m.Thus, for (1) to (4), Eq. 8-7 tells us that
AU = mg Ay = (2.0 kg)(9.8 m/s?)(—5.0 m)

= —08 1. {Answer)




Sample Problem %8 Build your skill

In Fig. 8-3, a child of mass m 15 r2leased from rest al the
top of a water slide, at height h = 85 m above the hot-
tom of the slide. Assuming that the slide is frictionless
because of the waler on il, ind the child’s speed al the
bottom of the slide.

IERE IPEAR (1) We cannol [ind her speed g1 the boltom

by wsing her acceleration along the slice as we might
have in earlier chapter: because we do not know the
slupe (angle) of (the slide. However, because that speed
is related to her kinetic energy, perhaps we can use the
principle of conservation of mechanical energy to get
the speed. Then we would not need o know Lthe slope,
{2 Mechanical energy is conserved in a system i the
system is isolated and if only conservative forces cause
enzrzy transfers within it. Let’s check.

rorces: 'Iwo ftorces act on the child. The gravita-
iomel foree, s corservative foree, does word on her The
normal force on her from the slide docs no wark be-
cause its direction at any point during the descert is al-
ways perpendicular to the direction in which the child
Moves.

System: Because the only foree doing work on the
child is the gravitational force, we choose the
child—Earth system as our system, which we can lake to
beisolated.

Thus, we have on'y a consarvative forcz doing werk
in an isolatad system, so we can use the principle of con
servation of mechanical energy.

Caleulations: Let the mechanical energy be E,.., when
the ¢hild is al the Lop of the slide and E,,.., when she is
at the bottom. Then the conservation principle tells us

Eméi:.ul' = Elﬁ.-‘eft_l . {8‘19 :|

|

h
FIG. -8 A child slidca \ ¥
down a water slide &5 she = = :
descends 2 height A. EESNET Sl

To show beth kinds of mechanical energy, we have

K, +U, =K+ U, (8-20)
or smvi + mgy, = ymvi + mgy,.
Drividing by re and rearranging yield
vi —vi + 280y~ )
Putting v, = Dand ¥, — ¥, — filcads to
7 = V2gh = V(2)(9.8 m/s") (8.5 m)
=13 m/s. { Answer)]

This is the samez speed that the child would reach if she
fell 8.5 m vertically. On an actual slide, some frictional
forces would act and the child would not be moving
guite so tast.

Camments: Although this problem is hard o solve di-
rectly with Newton’s laws, using conservation of me-
chanical energy makes the solution much easier.
However, if we wara asked to fnd the time taken for the
child to =each the bottom of the slide, cnergy methods
would be of no use; we would need to know the shape of
the slide, and we would have a difficult problem.

Sample Problem m

A food shipper pushes a wood crate of cabbage heads (to-
tal mass m = 14 kg) across a concrete floor with a con-
stant horizontal force F of magnitude 40 N, In a straight-
line displacement of magnitude d = 0.50 m, the speed of
the crate decreases from vy = 0.60 mfs tov = 0,20 m/s,

(a) How much work is done by force F, and on what
system does it do the work?

WAl Because the applied force F is constant,

we can calculate the work it does by using Eq. 7-7
(W = Fd cos ¢).

Calculation: Substituting given data, including the fact
that force F and displacement d are in the same direc-
tion, we find

W = Fd cos ¢ = (40 N){0.50 m) cos 0°

=201 {Answer)



Reasoning: We can determine the system on which the
work is done to see which energies change. Because the
crate’s speed chenges. there is certainly a change AK in
the crate’s kinetic enerey. Is there friction betwzen the
floor and the crate, and thos a change in thermal en-
ergy? Note that F and the crate’s velocity have the
same direction. Thus, if thers is no ‘rictior., then F
should be accelerating the crate to a greater specd.
However, the crate 1s slowing, so there must be friction
and & change AE,, in thermal energy of the crate and
the floor. Therelore, the system on which the work is
done is the crate-floor system, because hoth energy
changes oceur in that system.

(b) What is the increase AFy, in the thermal energy of
the crate and floor?

WMEER We can relate AEy, to the work W done by

F with the energy statement of Eq. 8-33 for a systzm
that involves friction:

W =AE,.. + AE,, (8-34)
Calculations: We know the valuc of W from (a). The
change AE,. in the crate’s mechanical energy is just the

change mnits Kinetic energy becauss no potential energy
changes oceur, so we have

AEpe = AK =3
Substituting this into Cq. 8-34 and sclving for AF,,, we find
AE, =W - [;.[mvz - %mvﬁj -W - Izm{v: — )

=201 - 5(14 kg)[(D.20 m/s)* — (0.50 m/s)*]
—212J=22].

mv: — Smvj,

{ Answer)

Sample Problem

Figure 8-1% shows the mountain slope and the valley
along which a rock avalanche moves The rocks have a
total mass e, fall from a height y = I, move a distance
dy along a slope of angle # = 42° and then move a dis-
tance . along a flat valley. What iz the ratio d/H of the
runcut to the fall height if the coefficient of kinetic fric-
tion nas the rzasonable value of (.607 -

{1) The mechanical energy I3, of the

rocks—Earth system is the sum of the Kinetic energy
K= %muz} and the gravitational potential energy
(U = mgy) (2) The mechanical cnergy is not conserved
during the shide becansz a (nonconservative) Irictional
force acts om the rocks, transferring an amount of en-
ergy AEy to the thermal cncrgy of the rocks and
gsround. (3) The translerred energy AE, is relatzd Lo the
magnitnde of the kinetic frictional force and the dis-
tance of shding by Eq. 8-31 (AL, = fd). (4) The me-
chamical energy £ .., at any point durng the shde is re-
lated to the iritial mechanical energy K, and the
transferred energy ALy, by Lg. 8-37, which can be
rewntten as £ .0 = Eee; — AE.

Caleulations: The final mechanical energy F, .. is
equal to the initial mechanical energy L., minus the
amount A £y, lost to thermal energy:

Enuc: = Epecy — AE . [8-23)

Initially the rocks have potential energy U/ = mgH and
kineric enerpy K = (1, and so the initial mechanical en-
ergy is B = mgH, Finally {when the rocks stop) the
rocks have potential energy U = 0 and kinetic energy
K =0, and sno F, ... = (. The amount of enzray trans-
ferred to thermel cnergy is AR, = fyd, during the
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slide down the slope and AE, = fi.d. during the
runontt across the valley, Substitnting these expressions
into Eq. 8-43,we have

[} o F'F'I'S'H ﬂ]d] - &2!{2. {8-44}

From Fig. 8-1%a, we scc that d, = H/(sin ¢). To ob-
tain expressions for the Kinetic [rictional [orces, we use
Fa. 6-2 (f, = p. k). Recall from Chapter 6 that on an
inclined plane the normal foree offsets the component
mg cos (ot the gravitational force (Fig. 8-19b). Similarly,
recall from Chapter 5 that on a horizontal surface the nor-
mal force offscts the full magnitude mg of the
gravitational force (Figz. 8-19c). Substituting these expres-
sioms into Fop 8-44 and solving for the ratio o'H, we find

H
U =mgH = w{mg cos 6)—="—— = pumgd;

i (’1 i )
R H \p tane)

(8-45)



