Sample Problem

In 1896 in Waco, Texas, William Crush parked two loco-
motives at opposite ends of a 6.4-km-long track, fired
them up, tied their throttles open, and then allowed
them to crash head-on at full speed (Fig. 7-1) in front of
30,000 spectators. Hundreds of people were hurt by
flying debris; several were killed. Assuming each loco-
motive weighed 1.2 X 10° N and its acceleration was a
constant 0.26 m/s?, what was the total kinetic energy of
the two locomotives just before the collision? e

palaasd (1) We need to find the Kinetic energy

of each locomotive with Eq. 7-1, but that means we
need each locomotive's speed just before the collision
and its mass. (2) Because we can assume each locomo-
tive had constant acceleration, we can use the equations
in Table 2-1 to find its speed v just before the collision.
Calculations: We choose Eq. 2-16 because we know
values for all the variables except v:
v =1} + 2a(x — x,).
With v, =0 and x — xy = 3.2 X 10° m (half the initial
separation), this yields

v =0+ 2(0.26 m/s*)(3.2 X 10° m),
or v =40.8 m/s

FiG. 71 The aftermath of an 1896 crash of two locomotives.
{(Courtesy Library of Congress)
ing its given weight by g:

1.2 X 10°N a
m= R 1.22 X 10° kg.

Now, using Eq. 7-1, we find the total kinetic energy
of the two locomotives just before the collision as

K = 2(;mv?) = (1.22 x 10° kg)(40.8 m/s)

(about 150 km/h). 2.0 X 10°7. (Answer)
We can find the mass of each locomotive by divid- This collision was like an exploding bomb.
Sample Problem m
Figure 7-da shows two industrial spies sliding an initially Thus. the net work Wis
stationzry 225 kg floor sa’e a displacement d of magni- W W+ Wo—=8633T + €5.117
tude .50 m, straight toward their truck. The push F, of ' I '
=1534]=153]. { Answer)

spy 001 is 12.0 N, dirceted at an angle of 30.0° down-
ward from the horizontal; the pull F, of spy 002 is
10,00 N, directed at 40.0° above the horizontal. The mag-
ritudes and directions of these forces do not change as
the safe moves, and the floor and safe make frictionlcss
contact.

(a) What is the net work done on the safe by forces F, 1
and F, during the displacement d?

During the 850 m displacement, therefore, the spies
transfer 153 1 of energy to the kinetic energy of the safe.

(b) During thz displacement, what is the work W_done
on the safe by the gravitational force F, and wh;ﬂ. is the
work Wy, done on the safe by the normal force Fyy from
the Hoor?



(1) The net work W done on the safe by the
two forces is the sum of the works they do individually.

(2) Because we can treat the safe as a particle and the
forces are constant in both magnitude and direction,
we can use either Eq. 7-7 (W = Fd cos ¢) or Eq. 7-8
(W= - F d} to calculate those works. Since we know the
magnitudes and directions of the forces, we choose
Eq.7-7.

Calculations: From Eq. 7-7 and the free-body diagram
for the safe in Fig. 7-4b, the work done by F, is

W, = Fid cos ¢, = (12.0 N)(8.50 m)(cos 30.0°)

= 88.33 ],
and the work done by Fz is
W, = Fyd cos ¢, = (10.0 N)(8.50 m)(cos 40.0°)
= 65111
Spy 002

Spy 001

Safe

(a)
FIG. 7-4  (a) Two spies move a floor safe through a displace-
ment d. (b) A free-body diagram for the safe.

Sample Froblem

Because these forces are constant in both
magnitude and direction, we can find the work they do

with Eq.7-7.

Calculations: Thus, with mg as the magnitude of the
gravitational force, we write

W, = mgd cos 90° = mgd(0) = 0 (Answer)
and Wy = Fydcos 90" = Fud(()) = 0. (Answer)
We should have known this result. Because these forces
are perpendicular to the displacement of the safe, they

do zero work on the safe and do not transfer any energy
to or from it.

(c) The safe is initially stationary. What is its speed v, at
the end of the 8.50 m displacement?

The speed of the safe changes because its
kinetic energy is changed when energy is transferred

to it by F,and E..

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

W=K;— K;,=3mvi — ;mvi.
The initial speed v; is zero, and we now know that the

work done is 153.4 J. Solving for vy and then substituting
known data, we find that

- \( 2W \j 2(153.4J)
z 225 kg

= 1.17 m/s.

{ Answer)

During a starm, a erate of crepe is sliding across a slick,
oily parking lot through a displacement & — [—3.0 mh
while a steady wind pushes Elgdll'lb[ the udT.;: with a
torce I = (2.UN)i + (—€.0 N)j. The situation and coor-
dinate axes are shown in Fig, 7-5.

{a) How much work does this force do on the crate
during the displacement?

el [3ccause we can treat the crale as a particle

and because the wind force is constant (“steady™) in
both magnitude and direction during the displacement,
we can use either Eq. 7-7 (W = Fd cos &) or Eq 7-8
(W= F'*Ef} to caleulate the work. Since we know F
and d in unit-vector notation, we choose Eq.7-8.

Calculations: We write
W=TF-d = [(2Z20N)i + (—60N)]-[(-3.0m)il.
Of the possible unit-vector dot products, only 11,3,
and k -k are nonzero (see Apperdix E). Here we obtain
W= (20 N)—3.0m)i-i+ (—6ON)(—-3.0m)j 1

= (—=6.0J)(1) + 0 = -6.0].

(Answer)

rome——— T T

il
FIG. 7.5 Forze F slows a crate during displacement d.
Thus, the force does a negative 6.0J of work on the
crate, fransferring 6.0 of cnergy from the kinztic
enerey of the crate.

(b} If the crate has a kinetic energy of 10 &t the
seginning of displacement o, what & its kinelic energy
at the end of 47

bbbl Bccause the force docs ncgative work on
the crare.it reduces the crate’s kinetic energy.

Calculation: Using the work—kinetic energy theorem
n the formof Egq. 7-11,we have
K=K+ W=10J+({-60J)=4.0J. (Answer)

Less kinelic energy means that the crate has been slowed.



Sample Problem

An initially stationary 15.0 kg crate of cheese wheels is
pulled, via a cable, a distance d = 5.70 m up a frictionless
ramp to a height & of 2.50 m, where it stops (Fig. 7-9a).

(a) How much work W, is done on the crate by the
gravitational force F durmg[hc lift?

We treat the crate as a particle and use Eq.
7-12 (W, = mgd cos ¢) to find the work W, done by F,.

Calculations: We do not know the angle ¢ between the
directions of F, and displacement d. However, from the
crate’s free- bod*_v diagram in Fig. 7-9b, we find that ¢ is
i + 90°, where A is the (unknown) angle of the ramp.
Equation 7-12 then gives us

W, = mgd cos(8 + 90°) = —mgdsin 8, (7-18)

where we have used a trigonometic identity to simplify
the expression. The result seems to be useless because 6
is unknown. But (continuing with physics courage) we
see from Fig. 7-9a that d sin 6 = A, where i is a known
quantity. With this substitution, Eq. 7-18 gives us

Wg - —mgh (?—Ig)
= —(15.0 kg)(9.8 m/s?)(2.50 m)
= 3681 (Answer)

Note that Eq. 7-19 tells us that the work W, done by the
gravitational force depends on the vertical displace-
ment but (surprisingly) not on the horizontal displace-
ment. (We return to this point in Chapter 8.)

(b) How much work Wy is done on the crate by the
force T from the cable during the lift?

We cannot just substitute the force magni-
tude T for F in Eq. 7-7 (W = Fd cos ¢)) because we do
not know the value of T. However, to get us going we
can treat the crate as a particle and then apply the
work - kinetic energy theorem (AK = W) toit.

FIG. 7-9 (a) A crate is pulled up a frictionless ramp by a force
T parallel to the ramp. (#) A free-body diagram for the crate,
showing also the displacement d.

Calculations: Because the crate is stationary before and
after the lift, the change AK in its kinetic energy is zero.
For the net work W done on the crate, we must sum the
works done by all three forces acting on the crate. From
(a), the work W, done by the gravitational force F' is
—368 1. The work Wy done by the nor mal force ."..,u on the
crate from the ramp is zero because Fyis perpendicular
to the displacement. We want the work W, done by T.
Thus, the work —kinetic energy theorem gives us

AK =W+ W, + Wy
or 0=W;—368]+0,
W, = 368 J.

and so ( Answer)

Sample Problem Build your skill

An elevator cab of mass m = 500 kg is descending with
speed v; = 4.0 m/s when its supporting cable begins to
slip, allowing it to fall with constant acceleration
@ = ¥/5 (Fig. 7-10a).

(a) During the fall through a distance d = 12 m, what

is the work W, done on the cab by the gravitaticnal
force F ?

el We can treat the cab as a particle and thus
use By, 7-12( W, = mgud cos ¢h) Lo find the work We.



Calculation: From Fig. 7-10b, we see that the angle
between the directions of f‘ and the cab’s displacement
dis0°. Then, from Eq.7-12, we find
W, = mgd cos 0° = (500 kg)(9.8 m/s*)(12 m)(1)
= 5.88 X 10*J = 59 kJ. (Answer)

(b} During the 12 m fall, what is the work W done on
the cab by the upward pull 7 of the elevator cable?

(1) We can calculate the work Wy with

Eq.7-7 (W = Fd cos o) if we first find an expression for
the magnitude T of the cable’s pull. (2) We can find that
expression by writing Newton’s second law for compo-
nents along the y axis in Fig. 7-10b (F.,, = ma,).

Calculations: We get
T—F.=ma
Solving for T, substituting mg for F,, and then substitut-
ing the result in Eq. 7-7, we obtain
Wy = Tdcos ¢ = mia + g)d cos .

Next, substituting —g/5 for the (downward) accelera-
tion a and then 180° for the angle ¢ between the direc-
tions of forces T and mg, we find

4
W, = m(—% + g)dcm¢ = ?mgdcus-ﬁ

% (500 kg)(9.8 m/s?){12 m) cos 180°

—4.70 X 10*J = —47kJ.

(Answer)

Caution: Note that Wy is not simply the negative of W,.
The reason is that, because the cab accelerates during
the fall, its speed changes during the fall, and thus its
kinetic energy also changes. Therefore, Eq. 7-16 (which
assumes that the initial and final kinetic energies are
equal) does not apply here.

(c) What is the net work W done on the cab during the
fall?

~—Elevator
cahle

=~}

Bl
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FIG. 710 An elevator cab, descending with speed v, sud-
denly begins to accelerate downward. (a) It moves through a
displacement d with constant acceleration @ = gi5.(b) A
free-body diagram for the cab, displacement included.

Calculation: The net work is the sum of the works done
by the forces acting on the cab;

W=W,+ Wr=588xX104T — 470 X 10*]
=118 X 10*J = 12 k1. (Answer)

(d) What is the cab’s kinetic energy at the end of the
12 m fall?

The kinetic energy changes because of the
net work done on the cab, according to Eq. 7-11 (K, =

K, + W).

Calculation: From Eq. 7-1, we can write the kinetic
energy at the start of the fall as K; = jmv?. We can then
write Eq.7-11 as

Ki=K;+ W= 2J*l*'n-'f+|}1i"
= 1(500 kg)(4.0 m/s + 1.18 X 10*]
= 1.58 X 10°J = 16 kJ.

l

(Answer)

Sample Problem

A package of spicy Cajun pralines lies on a frichonless
floor, attachad to the [ree end of a spring in the arrange
ment of Fig. 7-11a. A rightward applied force of magni-
tude F, = 4.9 N would be nceded to hold the package al

¥ =12 mm.

(a) How much work does the spring force do on the
package il the package is pulled rightward from x, = 0
0% = 17 mm?

KEY IDEA SN package moves from one position Lo

another, the spring force does work on it as given by
Eq.7-25 ar Eq. 7-20.

Calculations: We know that thz initial position x, is 1)
and the final position x; is 17 mm. but we do not know
the spring constant k. We can probably find & with Eq.
7-21 (Hooke™s law), but we need this fact to use it Were



the package held stationary at x; = 12 mm, the spring
force would have to balance the applied force
(according to Newton's second law). Thus, the spring
force F, would have to be —4.9 N (toward the left in
Fig. 7-11b);s0 Eq. 7-21 (F, = —kx) gives us

Pe —49N

k:— R
X, 12X 103 m

= 408 N/m.

Now, with the package at x, = 17 mm, Eq. 7-26 yields
W, = —1kx} = —1(408 N/m)(17 x 1073 m)
= —0.059J.

(b) Next, the package is moved leftward to x;3=
—12 mm. How much work does the spring force do on

Sample Problem

(Answer)

the package during this displacement? Explain the sign
of this work.

Calculation: Now x; = +17 mm and x; = —12 mm, and
Eq.7-25 yields

W, = 1kx? = Yix} = 1k(x} - x3)
= 1(408 N/m)[(17 > 1073 m)? = (—12 % 10} m)?]
= 0.030J = 30 mJ.

This work done on the block by the spring force is
positive because the spring force does more positive
work as the block moves from x; = +17 mm to the
spring’s relaxed position than it does negative work as
the block moves from the spring’s relaxed position to
x; = =12 mm.

( Answer)

In Fig. 7-12, a cumin canister of mass m = 0,40 kg shides
across a horizontal frictionless counter with speed v =
(.50 m/s. It then runs into and compresses a spring of
spring constant & = 7500 N/m. When the canister is
momentarily stopped by the sprinz, by what distance o
is Lthe spring compressed?

1. The work W, done on the canister by the spring
force iz related to the requested distance o by Eq
7-26 (W, = —} kx?), with d replacing x.

2. The work W, is also related to the kinetic energy of
the canister by Eq. 7-10 (K, — K, = W)

3. The canister’s kinetic energy has an initial value of
K = ;mv* and a value of zero when the canister is
momentarily at rest.

Calculations: Putting the first two of these ideas
mgf_-.ther, we write the work - kinatic Energy thzorem for

uq_
E
[}-"Fril'liljn]fﬁﬁ. [ s

FIG. 7-12 A canister of mass m moves at velocity ¥ toward a
spring that has spring constant «.

the canister as
K;,— K; = —1kd>
Substituting zccording to the third dea makes this

EXPTESSION

0 - 1o — —1kd2
Simplifying, solving for ¢, and substituting known data
then give us

gyl B ST
=V = 00 MmN 7o Nm

=12%102m=12cm. { Answer)




Sample Problem BySN

Figure 7-16 shows constant forces F  and F , acting on a
box as the box slides rightward across a frictionless
floor. Force F, is horizontal, with magnitude 2.0 N;
force F, is angled upward by 60° to the floor and has
magnitude 4.0 N. The speed v of the box at a certain
instant is 3.0 m/s. What is the power due to each force
acting on the box at that instant, and what is the net
power? Is the net power changing at that instant?

bidual We wanl an instantaneous power, not an
average power over a time period. Also, we know the

box’s velocity (rather than the work done on it).

This negative rasult tells us that force F. is transferring
energy from :hc_? box at the rate of 6.0 Jfs,

For force F,, al angle ¢ = 607 10 velocity vV, we
have

%= [ov cos dn = (4.0 N)(3.0 mis) cos 60°

= 6.0W. (Answer]

This positive result tells us that force f_?.g is transferring
enerey fo the box at the rate of 6.0 J/5

Frictionless —\

FIG. 7-16 Two forces !_-", and F; act on a box that slides right-
ward across a frictionless floor, The velocity of the boxis ¥,

Calculation: We use Eq. 7-47 for each force. For force
Fy,atangle ¢, = 1807 to velocity Vv, we have

P, = Fyv cos ¢y = (2.0 N)(3.0 m/s) cos 180°

= —6.0 W ( Answer)

The net power is the sum of the individual powers:
Foo = F T F;

= 60W | 6.0W =0, (Answer)

which tells us that tha net rate of transfer of energy to
or from the box is zero. Thus, the kinctic encrgy
(K = 3mv?) of the box is not changing, and so the speed
of the box will remair at 2.0 m/s, With neither the forces

Fyand }!2 not the velocity + changing, we see from Eq.
7-48 that P, and P, are constant and thussois ..



