Sample Problem m

If a car’s wheels are “locked” (kept from rolling) during
cmcrgeney braking, the car slides along the road.
Ripped-offl bits of tire and small melted sections of road
form the "skid marks” that reveal that cold-wzlding
occurred during the slide. The record for the longest
skid marks on a public road was reportedly set in 1960
by a Jaguar on the M1 highway in England (Fig 6-3a) —
the marks were 290 m long! Assuming that p, — 0.60
and the car's acceleration was constant during the brak-
ing, how fast was the car going when the wheels became

locked? -

KEY IDEA : - .
(1) Because the acceleration a is assumed
constant, we can use the constant-zcceleration egua-

FIG, &3 (a) A car sliding to the right and finally stopping after
& displacemznt of 290 m. (b) A free-body diagram for the car.
tions of Table 2-1 to find the car's initial speed v, (2] If
we neglect the effects of the air on the car, acceleration
a was due only to a kinetic frictional force 1, on the car
from the roac, directed opposite the direction of the
car’s motion, essumed to be in the positive direction of
an x axis (Fig. 6-3b). We can relaic this force to the
acceleration by writing Newton's second law for x
components (F,., , = ma,) as

(6-3)

wheare m is the car's mass. The minus sign indicates the
direction of the kinetic frictiomal foree.

-f. = ma,

Calculations: From Eg. 6-2, the frictional force has the
magnitude f; = u. . where Fy is the magnitude of the
rormal foree on the car from the road. Bzeause the car
is not eccclerating verlically, we know from Fig. 6-3h
and Newton’s second law that the magnitude of F'-._l_s
equa! to the magnitude of the gravitational lorce F,
on the car, which is mg. Thus, F,, = mg.

Sample Problem

()

MNow solving Lg. 6-3 for @ and substituting f; =
b Fy = pymg for f, yield

g=_Je _ _ g

m il “ﬁ'd)

= =g,
where the minus sign indicates that the accelzration is
in the negative direction of the x axis, opposite the
direction of the velocity, Next, let’s use Eq. 2-16,

]

vi= i+ Zalx - xg),

[rom the constant-aceeleration eguations of Chaplen 2.
We know that the displacement x — x, was 290 m and
assume that the final speed v was (). Substituting for @
from Eq. 6-1 and sclving for v, give

J(2)(0.60)(9.8 m/s?)(290 m)

= sm’s = 210 km/h. (Answer)

¥y = '\Ilzﬁkg(x — xg)

We assumed thar v = 0 art the far end of the skid marks,
Actually, the marks ended only hecausz the Jaguar left
the road after 290 m. 50 v, was at leas/ 210 km/h.

In Fig. 6-4a, a block of mass m = 3.0 kg slides along a
floor while a force F of magnitude 12.0 N is applied to it
at an upward angle # The coefficient of kinetic friction
between the block and the floor is w, = 0.40. We can
vary # from 0 to 90° (the block remains on the floor).
What @ gives the maximum value of the block’s acceler-
ation magnitude a?

normal force is upward, the gravitational force F_;.,. with
magnitude mg is downward, and (note) the vertical
component F, of the applied force is upward. That
component is shown in Fig. 6-4¢, where we can see that
F, = F sin . We can write Newton's second law {F"m =
ma) for those forces along the y axis as

Fy + Fsin § — mg = m(0), {6-5)



KEY IDEAS Because the block is muoving, a kinedic ric-

tional force acts on it ’The magnitude is given by Eq. 6-2
(f. = w.F,, where F\isthe normal farcz). The direction
is opposite the motion (the friction opposes the sliding).

Calculating Fy: Because we need the magmtude f, of
the frictionzl force, we first must calculate the magni-
tude Fy, of the normal force. Figure 6-15 is a free-body
diagram showing the forces along the vertical y axis, The
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FIG. &4 (a} A force is applied to a moving block. (#) The ver-
tical forces (¢) The components of the applied force. (d) The
honzontal forces and acceleration,

Rearranging and using the identity (sin #)/(cos #) =
tan # give us

tan @ = pu.

Solving for @ and substituting the given p, = 0.40, we
find that the acceleration will be maximum if

f=tan! u,
=21.8° = 22°,

Sample Problem m

{Answer)

where we substituted zerc for the acceleration along the
y axis (the block does not even move along that axis).
Thus,

Fy=mg— Fsin 8 (6-6)

Calculating acceleration a: Figure 6-4d is a free-body
diagram for motion along the x axis. The horizontal
component F, of the applied force is rightward; from
Fig. 6-4c, we see that I, = I’ cos (. The frictional force
has magnitude f; (= ueFy) and is leftward. Writng
Newton’'s second law for motion along the x axis gives
us

Feos 00— pyly = ma. {6-7)

Substituting for Fy from Eq.6-6 and solving for a lead to

F F
@ =——cos f#— ,uk(g — - sin H), (6-8]

i 3 o

Finding a maximum: To find the value of # that maxi-
mizcs a, we lake the denivative of @ with respect to 9end
set the result equal to zero:

lui

dan
Comment: As we increase f from (0, more of the
applied force F is upward, relieving the normal force.
The decrease in the normal force causes a decrease in
the frictional force, which opposes the block’s motion.
Thus, the block’s acceleration tends to increase. How-
ever, the increase in # also decreases the horizontal
component of F, and so the block’s acceleration tends
to decrease. These opposing tendencies produce a maxi-
mum acceleration at § = 22°,

F F
= ——gin 9 + —cos =0,
M A

Although many ingenious schemes have been altrib-
uted to the building of the Grezat Pyramid, the stone
hlocks were probably hanled up the side of the pyramid
by men pulling on ropes. Figure 6-5a represents a 2000
kg stone block in the process of being pulled up the fin-
ished (smooth) side of the Great Pyramid. which forms
a plane inclined at angle ¢ = 52° The block is securcd
to a wood sled and is pulled by multiple ropes (only one
s shown). The sled’s track is lubricated with water to
decrease the coefficient of static friction to 0.40. Assume
nezligible friction at the (lubricated) point where the
ropes pass over the edge at the top of the side. If each
men on top of the pyramid pulls with a (reasonable)
force of b6 N, how many men are needed to pul the
block on the verge of moving? -t

second law becomes

Fy — mgcos ¢ = m(D), (6-11)

Solving Lq. €-11 for Fy and substituting the result into
Eq. 6-10, we have

I = pamgcos 0. (6-12)

sudshtuting this expression into Eqg. 6-9 and solving tor
Flead to

F = pmgcos 8+ mgsin 8 (6-13)

Substituting m = 2000 kg, 9= 52, and u, = 0.40, we
find that the force required to put the stone block on
the verge of moving is 2.027 X< 10% N. Dividing this by
the assumed pulling force of 686 N from each man, we
find that the required number of mew s



m (1) Because the block is on the verge of

maving, the static Irictional force must be at its maxi-
mum possible value; that is, f, = £, .. (2) Because the
hlock is an the verge of moving up the plane, the fric-
tional force must be dowa the plane (to oppose the
pending motion). (3) From Sample Problem 5-3, we
know that the component of the gravitalional force
down the plane s myg sin @ and the componert perpen-
dicular to (and inward from) the plane is myg cos #
{Tig. 6-5b).

Calculations: Figure 6-5¢ is a free-bedy diagram for the
black, showing the fores F appliad by the rapes, the sta-
tic frictional force f, and the two components of the
gravilational force. We can write Newton’s second law
(F et = ma ) for forces along the x axis as

F— mgsin 8 — f, = m(0). (6-9)

Because the block is on the verge of sliding and the fric-

tional force is at the maximum possidle value f, .., we

use Eq.6-1 to replace f, with w.Fy:
Ji = finax

= iFiy (6-10)

From Figure 6-5¢, we see that along the v axis Newton’s

2027 X 10°N

¥ a86 N

=295 =30 men.  (Answer)

Comment: Once the stone block tegan to move, the
friction was kinelic friction and the coefficient was
about 0.20. You can show that the required number of
men was then 28 or 27, Thus, the huge stonc blocks of
the Great Pyramid could be pulled up into position by
rezscnably small teams of men.
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FIG. 65 () A stone block on the verge of being pulled up
the side of the Great Pyramid, (5) The components of the
gravitational foree () A free-bady diagram for the block.

Sample Problem BB Build your skill

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix
without friction failing, This downward push is called neg-
arive fifi. Can a race car have so much negative Iift that it
could be driven upside down on a long ceiling, as done fic-
tionally by a sedan in the first Men in Black movie?!

Figure 6-17a represents a Grand Prix race car of
mass m = 600 kg as it travels on a flat track in & circular
arc of radius R = 100 m. Because of the shape of the car
and the wings an it, the passing air exerts a negative lift
F, ;. downward on the car. The coefficient of static
friction between the tires and the track is 0.75. (Assume
that the forces on the four tires are identical.) -

(a) If the car is on the verge of sliding out of the tum
when its speed s 28.6 m/s, what is the magnitude of F?

(e [dr)

FIG. 612 (@) A race car moves around a fAat curved track at
constant speed v. The frictional force f, provides the necessary
centripetal force along a radial axis r. (#) A Iree-body diagram
{not to scale) for the car, in the vertical plane containing r.

for components along the y axis (£, , = ma,) as
Fy—myg—F, =0,

Or -'FN = mg + ..F;_. f6-24}



KEY IDEAS

1. A centripetal force must act on the car becausz the
car 16 moving around a circular are; that foree musl
e directed toward the center of curvailure of the arc
(here, that is horizontally).

2. The only horizontal foree acting on the car is a fric-
tional force on the tires from the road. 5¢ the
required centripetal force is a frictional force.

3. Because the car is not sliding, the Tictional (oree
must be a siatic frictional force 7, (Fiz. 6-12a).

4. Decause the car is on the verge of sliding, the magni-
tude f; 1s equal to the maximum value f; ... = p.
where Fy s the magnitude of the normal force Fy
zcting on the car from the track.

Radial calculations: The frictional force :ifz.e is shown in
the free-body diagram of Fig. 6-12b. It is in the negative di-
rection of aradial axis » that always extends from the center
of curvature through the car as the car moves. The force
nroduces a centripetal acceleration of magnitude v/ R. We
can relate the foree and acceleration by writing MNewton’s
second law for components along the r axis (F, , = ma,) as

V‘?
Z m(—?)- (6-22)
Substituting f, ... = w.Fyfor f leads us to
-

Vertical calculations: Next, let's consider the vertical
forces on the car. The normal force ﬁ,- is direcied up. in
the positive direction of the y axis in Fig. 6-12b, The
gravitational force £, = mg and the negative lift F, are
directed down. The acceleration of the car along the
v axis is zero. Thus we can write Newton's second law

Combining results: Now we can combine our results
along the two excs by substituting Cg. 6-24 for I'y in Lq.
9-23. Doing so and then solving for £, lead to

£,
F,r_=m1 e )

) #.TR
¥ 2 ]
o (286 m's¥ -
= (600 k —_— — D e mfE
©w0kg) | 075100 m) o ms )
= 6637 N = 660 N, {Answer)

(b) The magnitude F, of the negative lift on a car
depends on the syuare of the car’s speed 2, just as the
drag force does (Eq. 6-14). Thus, the negative lift on the
car here is greater when the car travels faster, as it does
on a straight section of track. What is the magnitude of
the negative lift for a spzed of Y0 m/s?

m F, isproportional to v2.

Calculations: Thus we can write a ratio of the ncgative
lift #; g at v =90 m/s to our result for the negative lift
F,altv=2Ramlkas
Fro _(WmSs )
Fy (28.6 m/s)”

Substituting FF; = 663.7 N and solving for F, , give us
F,_y — 6572 N = 6600 N.

{Answer)
Upside-down racing: The gravitational forec s
F, = mg = (600 kg)(2.8 m/s?)
= SRRON
With the car upside down, the negative 1ift is an upward
force of 6600 N, which exceeds the downward 5830 N

‘Thus, the car could run on a long celling provided that il
mavas at ahout W m/s (= 324 km/h = 201 mi‘h).




