Temperature, Heat, and the First Law of Thermodynamics

Thermodynamics

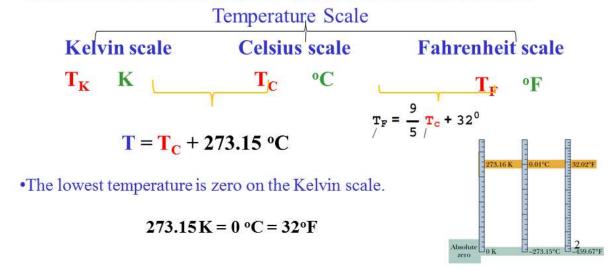
is the study of thermal energy (internal energy) of systems. Temperature is the central concept of thermodynamics.

Every body has a property called temperature

Measuring temperature by hand is not reliable

Temperature (T)

Temperature is one of the seven SI base quantities.


SI unit for temperature is the Kelvin (K)

Review Chapter 18

The zeroth law of thermodynamics

If bodies A and B are each in thermal equilibrium with a third body T, then A and B are in thermal equilibrium with each other.

The Celsius, Fahrenheit, and Kelvin Temperature Scales

Expansion of a solids

linear expansion (ΔL) surface area expansion (ΔA) volume expansion (ΔV)

$$\Delta L = L \alpha \Delta T$$

ΔL is the change in length L is original length α is coefficient of linear expansion

 ΔT is the change in temp.

 $\Delta A = A 2\alpha \Delta T$

ΔA is the change in area A is original area α is coefficient of linear expansion

 ΔT is the change in temp.

 $\Delta \mathbf{V} = \mathbf{V} \boldsymbol{\beta} \Delta \mathbf{T}$

 ΔV is the change in volume

V is original volume

 β is coefficient of volume expansion

 ΔT is the change in temp.

$$\beta = 3\alpha$$

coefficient of expansion

- •It is constant
- •it depends on the material of the substance
- •It has the unit "per degree" or "per kelvien (1/°C, (°C)-1)

3

Review Chapter 18

Heat (Q) is the energy that is transferred between two objects because of a temperature difference that exists between them.

Heat always flows from warmer to cooler objects.

SI unit for heat is joule (J) or non SI unit is calorie (cal)

$$1 \text{ cal} = 4.1860 \text{ J}$$

Heat (Q) is the energy that is transferred between a system and its environment because of a temperature difference that exists between them.

Positive and negative heat

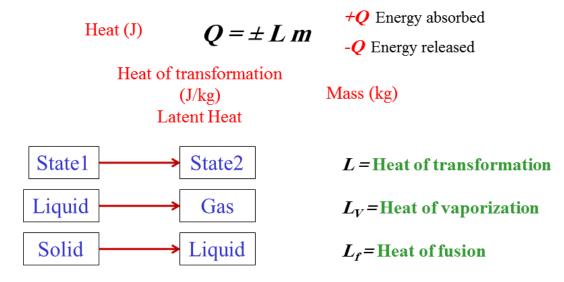
Heat absorbed No Heat Heat released (energy transfers to the system) (no energy transfers) (energy transfers from the system) $Q > 0 \rightarrow +ve Q$ Q = 0 $Q < 0 \rightarrow -ve Q$

4

Heat (J)
$$\leftarrow Q = C \Delta T = C (T_f - T_f)$$

Heat capacity Change in (J/K) temperature (K)

Specific heat


Heat
(J)
$$Q = c m \Delta T$$
Change in
Specific Heat mass temperature (K)
(J/kg.K)
(kg)
$$T_f - T_i$$

The specific heat for water is $C_w = 1 \text{ cal/g.C}^\circ = 4184 \text{ J/kg.K}_s$

Review Chapter 18

Heat of transformation

Heat of transformation is the heat per unit mass required to change a substance from one state to another.

6

The heat absorbed or lost by a substance is given by:

no change in the phase

(i) If there is a change in temperature and there is no change in the phase

$$Q = \pm c m \Delta T$$

no change in the temperature

change in phase

(ii) If there is a change in phase and the temperature of the system remains the same

$$O = \pm m L$$

If there is fusion (solid \rightarrow liquid), then we use L_f , if there is vaporization (liquid \rightarrow gas), then we use L_v

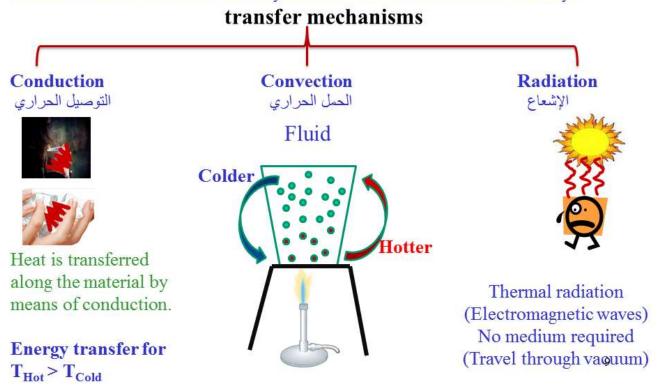
Review Chapter 18

This section is related to gases only

The first law of thermodynamics is the law of *conservation of energy and given by*

Change in the internal energy of a system

$$\Delta \mathbf{E_{int}} = \mathbf{Q} - \mathbf{W}$$
Work done by it


$$\cdot W > 0 \text{ if the gas does work} \\
\cdot W < 0 \text{ if external work is done on the gas}$$
If P is constant $\rightarrow \mathbf{W} = \mathbf{P} \Delta \mathbf{V}$

- Q > 0 if the gas absorbs (gains) heat
- Q < 0 if the gas expels (lose) heat
- 1- Adiabatic processes $\rightarrow Q = 0 \rightarrow \Delta E_{int} = -W$
- 2- Cyclical processes $\rightarrow \Delta E_{int} = 0 \rightarrow Q = W$
- 3- Constant-volume processes \rightarrow W = 0 \rightarrow ΔE_{int} = Q
- 4- Free expansion processes $\rightarrow Q = 0$ W=0 $\rightarrow \Delta E_{int} = 0$ 8

7

How does heat transfer take place?

Heat can be transferred between a system and the environment in three ways:

