King Abdul Aziz University Mathematics Department Workshop 9 Professor Hamza Ali Abujabal

Faculty of Sciences
Math 110
Section 3.4+3.5
Prof\_h\_abujabal@yahoo.com

- 1)  $\lim_{x \to 3^+} \frac{2}{x 3} =$
- *a* 0
- $\boxed{b}$   $-\frac{2}{3}$
- c  $-\infty$
- d  $\infty$

- 2)  $\lim_{x \to 3^{-}} \frac{2}{x 3} =$
- <u>a</u> 0
- $\boxed{b} \frac{2}{3}$
- c  $-\infty$
- d  $\infty$

- 3)  $\lim_{x \to 3^+} \frac{-2}{x 3} =$
- <u>a</u> 0
- $\boxed{b} \frac{2}{3}$
- c  $-\infty$
- d  $\infty$

- 4)  $\lim_{x \to 3^{-}} \frac{\overline{-2}}{x 3} =$
- $\boxed{a}$  0
- $b \frac{2}{3}$
- c  $-\infty$
- d  $\infty$

- 5)  $\lim_{x \to -3^+} \frac{2}{x+3} =$
- *a* 0
- $b \frac{2}{3}$
- c  $-\infty$
- d  $\infty$

- 6)  $\lim_{x \to -3^{-}} \frac{2}{x+3} =$
- $\boxed{a}$  0
- $\boxed{b}$   $-\frac{2}{3}$
- c  $-\infty$
- d  $\infty$

- 7)  $\lim_{x \to 2^+} \frac{3x 1}{x 2} =$
- *a* 0
- b  $-\infty$
- c  $\frac{1}{2}$
- $d \propto$

- 8)  $\lim_{x \to 2^{-}} \frac{3x 1}{x 2} =$
- a 0
- b  $-\infty$
- c  $\frac{1}{2}$
- d  $\infty$

- 9)  $\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} =$

- $[a] 0 \qquad [b] -\infty \qquad [c] \frac{1}{2}$
- d  $\infty$

- 10)  $\lim_{x \to -2^{-}} \frac{1-x}{(x+2)^{2}} =$
- <u>a</u> 0 <u>b</u> −∞
- $c \frac{1}{2}$
- d  $\infty$

- 11)  $\lim_{x \to -2^+} \frac{x 1}{(x + 2)^2} =$
- a 0  $b -\infty$
- c  $\frac{1}{2}$
- d  $\infty$

- 12)  $\lim_{x \to -2^{-}} \frac{x 1}{(x + 2)^{2}} =$
- a 0  $b -\infty$
- c  $\frac{1}{2}$
- d  $\infty$

- 13)  $\lim_{x \to 2^{+}} \frac{6x 1}{x^2 4} =$
- $\boxed{a} \ 0 \qquad \boxed{b} \ -\infty$
- $c \frac{1}{4}$
- d  $\infty$

- 14)  $\lim_{x \to 2^{-}} \frac{6x 1}{x^2 4} =$
- $\begin{bmatrix} a \end{bmatrix} 0 \qquad \qquad \begin{bmatrix} b \end{bmatrix} -\infty$
- c  $\frac{1}{4}$
- d  $\infty$

- 15)  $\lim_{x \to -2^+} \frac{6x 1}{x^2 4} =$
- <u>a</u> 0 <u>b</u> −∞
- c  $\frac{1}{4}$
- $d \propto$

- 16)  $\lim_{x \to -2^{-}} \frac{6x 1}{x^2 4} =$
- a 0  $b -\infty$
- $c \frac{1}{4}$
- d  $\infty$

- 17)  $\lim_{x \to -2^{-}} \frac{6x 1}{x^2 x 6} =$
- *a* 0
- b  $-\infty$
- c  $-\frac{1}{2}$
- $d \propto$

- 18)  $\lim_{x \to -2^+} \frac{6x-1}{x^2-x-6} =$
- a 0
- b  $-\infty$
- c  $-\frac{1}{2}$  d  $\infty$

- 19)  $\lim_{x \to 3^+} \frac{-1}{x^2 x 6} =$
- a 0
- c  $\frac{1}{2}$
- $d \propto$

- 20)  $\lim_{x \to 3^{-}} \frac{-1}{x^2 x 6} =$
- a 0
- b  $-\infty$
- $c \frac{1}{2}$
- d  $\infty$

- 21)  $\lim_{x \to (\pi/2)^+} \tan =$
- |a| 0
- $b \infty$   $c \frac{\pi}{2}$
- $|d| \infty$

- 22)  $\lim_{x \to (\pi/2)^{-}} \tan =$
- a 0
- $b \infty$   $c \frac{\pi}{2}$   $d \infty$
- 23) The vertical asymptote of  $f(x) = \frac{1-x}{2x+1}$  is
- $\boxed{a} \quad y = -\frac{1}{2} \qquad \boxed{b} \quad x = \frac{1}{2} \qquad \boxed{d} \quad y = \frac{1}{2}$

- 24) The vertical asymptote of  $f(x) = \frac{3-x}{r^2-4}$  is
- a  $y = \pm 2$

- $y = \pm 2$  b  $x = \pm 2$  c x = -1 d y = -125) The vertical asymptote of  $f(x) = \frac{3-x}{x^2-x-6}$  is
- a  $y = \pm 2$

- $y = \pm 2$  b x = -3,2 c x = -2 d y = -2,326) The vertical asymptote of  $f(x) = \frac{7-x}{x^2-5x+6}$  is

- y = 2,3 b = 2,3 c = -3,-2 d = -3,-227) The vertical asymptote of  $f(x) = \frac{x-7}{x^2+5x+6}$  is

- $b \ x = 2,3$   $c \ x = -3,-2$   $d \ y = -3,-2$

| 28) The vertical asymptote of $f(x) = \frac{x-7}{x^2+3x}$ is                                                                                            |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| a y = 0.3 $b x = 0.3$ $c x = -3.0$ $d y = -3.0$                                                                                                         |  |  |  |  |
| 29) The vertical asymptote of $f(x) = \frac{x-7}{x^2-3x}$ is                                                                                            |  |  |  |  |
| $a \ y = 0.3$ $b \ x = 0.3$ $c \ x = -3.0$ $d \ y = -3.0$                                                                                               |  |  |  |  |
| 30) The vertical asymptotes of $f(x) = \frac{2x^2 + 1}{x^2 - 9}$ are                                                                                    |  |  |  |  |
| $\boxed{a}  y = \pm 3 \qquad \boxed{b}  x = \pm 3 \qquad \boxed{c}  x = 2 \qquad \boxed{d}  y = 2$                                                      |  |  |  |  |
| 31) The function $f(x) = \frac{x+1}{x^2-9}$ is                                                                                                          |  |  |  |  |
| a continuous at $a = 2$ b discontinuous at $a = 2$                                                                                                      |  |  |  |  |
| 32) The function $f(x) = \frac{x+1}{x^2-9}$ is                                                                                                          |  |  |  |  |
| $\boxed{a}$ continuous at $a = \pm 3$ $\boxed{b}$ discontinuous at $a = \pm 3$                                                                          |  |  |  |  |
| The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at                                                                                             |  |  |  |  |
| $\boxed{a} \ 9 \qquad \boxed{b} \left[ -3,3 \right] \qquad \boxed{c} \left( -\infty, -3 \right) \cup \left( 3, \infty \right) \qquad \boxed{d} \ \pm 3$ |  |  |  |  |
| 34) The function $f(x) = \frac{x+1}{x^2-9}$ is continuous on                                                                                            |  |  |  |  |
| $a 9 \qquad b [-3,3] \qquad c \mathbb{R} \setminus \{\pm 3\} \qquad d \pm 3$                                                                            |  |  |  |  |
| 35) The function $f(x) = \begin{cases} \frac{\sin 3x}{x} & : x \neq 0 \\ 3 & : x = 0 \end{cases}$ is                                                    |  |  |  |  |
| a continuous at $a = 0$ b discontinuous at $a = 0$                                                                                                      |  |  |  |  |
| 36) The function $f(x) = \begin{cases} \frac{\sin 3x}{x} & : x \neq 0 \\ 5 & : x = 0 \end{cases}$ is                                                    |  |  |  |  |
| a  continuous at $a=0$ $ b $ discontinuous at $a=0$                                                                                                     |  |  |  |  |
| 37) The function $f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1} & : x \neq 1 \\ 7 & : x = 1 \end{cases}$                                             |  |  |  |  |

a continuous at a=1 b discontinuous at a=1

```
The function f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1} & : x \neq 1 \\ 1 & : x = 1 \end{cases} is
    38)
                                  b discontinuous at a = 1
|a| continuous at a=1
           The function f(x) = \frac{x^2 - x - 2}{x - 2} is
                The function f(x) = \begin{cases} 2x + 3 & : x > 2 \\ 3x + 1 & : x \le 2 \end{cases} is
                                             |\underline{b}| discontinuous at a = 2
|a| continuous at a=2
                                   b discontinuous at a = 2
|a| continuous at a=2
                 The function f(x) = \frac{x+3}{\sqrt{x^2-4}} is continuous on
                42)
   43)
   The function f(x) = \frac{x+3}{\sqrt{4-x^2}} is continuous on
                        45) The function f(x) = \frac{x+1}{x^2 - 4} is continuous on

\begin{array}{c|c}
\hline
b & [-2,2] & \hline
c & \{x \in \mathbb{R} : x \neq \pm 2\} & \hline
d & (-\infty,-2) \cup (2,\infty)
\end{array}

The function of f(x) = \log_2(x+2) is continuous on
   \frac{\left(-\infty,\infty\right)}{47} \quad \boxed{b} \left(0,\infty\right) \quad \boxed{c} \left(-2,\infty\right) \qquad \boxed{d} \left(2,\infty\right)
47) \quad \text{The function } f\left(x\right) = \sqrt{x-1} + \sqrt{x+4} \text{ is continuous on}
a (-\infty,\infty)
             b = [4,\infty) c = [-1,\infty) d = [-4,\infty)
a [1,\infty)
   48) The function f(x) = 5^x is continuous on
                                 b \begin{bmatrix} -1,1 \end{bmatrix}
|a| (-\infty,0)
                                                            |c| (0,\infty)
   49) The function f(x) = e^x is continuous on
|a| (-\infty,0)
                                 |b|[-1,1]
                                                            |c| (0,\infty)
```

| 50) | The function | $f(x) = \sin^{-1}(3x - 5)$ | is continuous on |
|-----|--------------|----------------------------|------------------|
|     |              |                            |                  |

$$a \left[ \frac{4}{3}, 2 \right]$$

$$\boxed{b} \left[ -\frac{4}{3}, 2 \right]$$

$$d$$
  $\left(\frac{4}{3},2\right)$ 

 $\boxed{a} \left[ \frac{4}{3}, 2 \right] \qquad \boxed{b} \left[ -\frac{4}{3}, 2 \right] \qquad \boxed{c} \quad \left[ -2, 2 \right] \qquad \boxed{d} \left( \frac{4}{3}, 2 \right) \\
51) \text{ The function } f(x) = \cos^{-1}(3x + 5) \text{ is continuous on}$ 

$$a \left[ \frac{4}{3}, 2 \right]$$

$$\boxed{b} \left[ -2, -\frac{4}{3} \right] \qquad \boxed{c} \quad \left[ -2, 2 \right] \qquad \boxed{d} \left( \frac{4}{3}, 2 \right)$$

$$c$$
  $[-2,2]$ 

$$\boxed{d} \left( \frac{4}{3}, 2 \right)$$

52) The number c that makes  $f(x) = \begin{cases} c+x & :x>2\\ 2x-c & :x \le 2 \end{cases}$  is continuous at x=2 is

$$\boxed{a}$$
 -4

 $\frac{-4 \quad b \quad -1 \quad c \quad 1}{53} \quad \frac{d}{2}$ 53) The number c makes  $f(x) = \begin{cases} cx^2 - 2x + 1 & : x \le -1 \\ 3x + 2 & : x > -1 \end{cases}$  is continuous at -1 is

$$\boxed{a}$$
 -4

<u>b</u> −1

c 0

54) The number c that makes  $f(x) = \begin{cases} \frac{\sin kx}{x} + 2x - 1 & : x < 0 \\ 3x + 4 & : x \ge 0 \end{cases}$  is continuous at

0 is

55) The value c that makes  $f(x) = \begin{cases} cx^2 + 2x & : x \le 2 \\ x^3 - cx & : x > 2 \end{cases}$  is continuous at 2 is

$$\boxed{a}$$
  $-\frac{2}{3}$ 

 $\boxed{a - \frac{2}{3} \quad \boxed{b} \quad \frac{2}{3} \quad \boxed{c} \quad 0 \quad \boxed{d} \quad \frac{3}{2}}$ 56) The number c that makes  $f(x) = \begin{cases} c^2x^2 - 1 & : x \le 3 \\ x + 5 & : x > 3 \end{cases}$  is continuous at 3 is

$$a$$
 ±3

 $\boxed{b} \pm \frac{\sqrt{7}}{3} \qquad \boxed{c} \ 0 \qquad \boxed{d} \pm 1$ 

57) The number c that makes  $f(x) = \begin{cases} x-2 & : x > 5 \\ cx-3 & : x \le 5 \end{cases}$  is continuous at 5 is

$$\boxed{a} - \frac{6}{5} \qquad \boxed{b} \quad \frac{5}{6} \qquad \boxed{c} \quad 2$$

58) The number c that makes  $f(x) = \begin{cases} x+3 & :x > -1 \\ 2x-c & ;x \le -1 \end{cases}$  is continuous at -1 is

$$a -4$$