King Abdul Aziz University **Mathematics Department**

Workshop 12

Faculty of Sciences Math 110 Section 5.3 (1'Hôpital Rule) Prof_h_abujabal@yahoo.com

Professor Hamza Ali Abujabal

1)
$$\lim_{x \to 0} \frac{x^3 + 5x^2}{x^2} = \left(\text{ of the form } \frac{0}{0} \right)$$

|a| 5

$$b$$
 -5

$$c$$
 -10

$$d$$
 0

$$\boxed{b} \frac{1}{12}$$

$$c$$
 $\frac{1}{8}$

$$d$$
 0

$$\frac{\boxed{a} \ 12}{3) \ \lim_{x \to 1} \frac{x-1}{\ln x} = \left(\text{of the form } \frac{0}{0}\right)}$$

 $|a| \infty$

 \overline{c} does not exist

 $d \mid 0$

 \overline{c} does not exist

 $d \mid 0$

5)
$$\lim_{x \to -6} \frac{x+6}{x^2-36} = \left(\text{ of the form } \frac{0}{0} \right)$$

d 0

 \boxed{c} 18 \boxed{d} does not exist

7)
$$\lim_{x \to \infty} \frac{x^2}{2e^x} = \left(\text{ of the form } \frac{\infty}{\infty} \right) \left(\lim_{x \to \infty} e^x = \infty \right)$$

|d|0

$$\frac{a}{8} \propto \frac{b}{1} \qquad c \text{ does not exist}$$

$$8) \lim_{x \to -2} \frac{x+2}{x^3+8} = \left(\text{ of the form } \frac{0}{0}\right)$$

a 12 b
$$\frac{1}{12}$$
 c $\frac{1}{8}$ d does not exist

9) $\lim_{x \to 0^+} \frac{x - \tan x}{x \tan x} = \left(\text{ of the form } \frac{0}{0} \right)$

10)	$\lim_{x \to 1} \frac{\ln x}{\sin(\pi x)} = \left(\text{of the form } \frac{0}{0} \right)$
$a \frac{1}{\pi}$	$b ext{ } 1 ext{ } c ext{ } -\frac{1}{\pi} ext{ } d ext{ } 0$
11)	$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \left(\text{of the form } \frac{0}{0} \right)$
<u>a</u> 1	$b \frac{1}{2}$ $c \infty$ $d 0$
12)	$\lim_{x \to 0} \frac{\sin^{-1} x}{\sin x} = \left(\text{ of the form } \frac{0}{0} \right)$
\boxed{a} -1	$b ext{ } 1 ext{ } c ext{ } does not exist ext{ } d ext{ } 0$
13)	$\lim_{x \to \infty} \frac{3^x}{6^x} = \left(\text{ of the form } \frac{\infty}{\infty} \right) \left(\lim_{x \to \infty} a^x = \infty, a > 1, \lim_{x \to \infty} a^x = 0, 0 < a < 1 \right)$
$a \propto$	$b ext{ 1}$ $c ext{ does not exist } d ext{ 0}$
14)	$\lim_{x \to \infty} \frac{2^x}{3^x} = \left(\text{ of the form } \frac{\infty}{\infty} \right) \left(\lim_{x \to \infty} a^x = \infty, a > 1, \lim_{x \to \infty} a^x = 0, 0 < a < 1 \right)$
$a \infty$	$b ext{ 1}$ does not exist $d ext{ 0}$
15)	$\lim_{x \to \infty} \frac{e^x}{x^2} = \left(\text{ of the form } \frac{\infty}{\infty} \right) \left(\lim_{x \to \infty} e^x = \infty \right)$
$a \infty$	$b ext{ } 1 ext{ } c ext{ } does not exist ext{ } d ext{ } 0$
16)	$\lim_{x \to 4} \frac{x^2 - 3x - 4}{x - 4} = \left(\text{of the form } \frac{0}{0} \right)$
\boxed{a} –5	b 8 c 5 d does not exist
17)	$\lim_{x \to 3} \frac{x^2 + 4x - 21}{x^2 - 8x + 15} = \left(\text{of the form } \frac{0}{0} \right)$
<u>a</u> –5	$\boxed{b} - \frac{1}{5}$ \boxed{c} 5 \boxed{d} does not exist
18)	$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \left(\text{ of the form } \frac{\infty}{\infty} \right) \left(\lim_{x \to \infty} \ln x = \infty \right)$
$a \propto$	b 3 does not exist $d 0$
19)	$\lim_{x \to 2} \frac{\sqrt[3]{x+6} - 2}{x-2} = \left(\text{ of the form } \frac{0}{0} \right)$
a $\frac{1}{12}$	b 12 c 0 d does not exist

$20) \lim_{x \to 0} \frac{\sqrt{x + 25} - 5}{x} =$	$= \left(\text{of the form } \frac{0}{0} \right)$					
<u>a</u> – 10 <u>b</u>	$\left -\frac{1}{10}\right $	10	$\boxed{d} \ \frac{1}{10}$			
$\lim_{x \to 0} \frac{1 - \cos x}{x^2 + x}$	$\frac{1}{1} = \left(\text{of the form } \frac{0}{0} \right)$					
a 1 b $\frac{1}{2}$	c ∞	<u>d</u> 0				
$22) \lim_{x \to 2} \frac{x - 2}{2 - \sqrt{6 - x}} =$	$ \left(\text{of the form } \frac{0}{0}\right) $					
a does not exist	b 0	$c \frac{1}{4}$	<u>d</u> 4			
$23) \lim_{x \to 3} \frac{1 - \sqrt{x - 2}}{2 - \sqrt{x + 1}} =$						
a does not exist	b 0	$c \frac{1}{2}$	<u>d</u> 2			
24) $\lim_{x \to 4} \frac{x^2 - 6x + 8}{x^2 + x - 20} =$	$= \left(\text{of the form } \frac{0}{0} \right)$					
a does not exist	b 0	$c \frac{2}{9}$	<u>d</u> 1			
25) $\lim_{x \to -2} \frac{x^3 + 8}{x^2 - x - 6} = \left(\text{of the form } \frac{0}{0} \right)$						
a does not exist	$b - \frac{12}{5}$	c $-\frac{8}{5}$	<u>d</u> −12			
26) $\lim_{x \to -2} \frac{4x^2 + 6x - 4}{2x^2 - 8} = \left(\text{of the form } \frac{0}{0} \right)$						
a does not exist	b 5	$c \frac{5}{4}$	\boxed{d} $-\frac{5}{4}$			
27) $\lim_{x \to 1} \frac{\sqrt{2x+2}-2}{\sqrt{3x-2}-1} = \left(\text{of the form } \frac{0}{0} \right)$						
$a - \frac{3}{2}$	$\frac{2}{3}$ \boxed{c} $\frac{1}{3}$	d -	$-\frac{1}{3}$			

c does not exist

3

<u>d</u> −7

28) $\lim_{x \to -1} \frac{x^2 - 5x - 6}{x + 1} = \left(\text{ of the form } \frac{0}{0} \right)$

b 1

a 0

29) $\lim_{x \to 0} \frac{(x+3)^{-1} - 3^{-1}}{x} \left(\text{of the form } \frac{0}{0} \right)$						
$A - 9^{-1}$ $B = 0$ $C - 3^{-1}$ $D = 3^{-1}$						
30) $\lim_{x \to \infty} \frac{4x^5 + 6x - 4}{2x^5 - 8} = \left(\text{ of the form } \frac{\infty}{\infty} \right)$						
\boxed{a} does not exist \boxed{b} -2 \boxed{c} 2 \boxed{d} ∞						
31) $\lim_{x \to \infty} \frac{4x^4 + 6x - 4}{2x^5 - 8} = \left(\text{of the form } \frac{\infty}{\infty} \right)$						
$a - \infty$ $b 0$ $c 2$ $d \infty$						
32) $\lim_{x \to 0^+} \frac{\ln x}{x^{-1}} = \left(\text{of the form } \frac{-\infty}{\infty} \right) \left(\lim_{x \to 0^+} \ln x = -\infty \right)$						
$ \boxed{a} \ 1 \qquad \boxed{b} \ 0 \qquad \boxed{c} \ -\infty \qquad \boxed{d} \ \infty $						
33) $\lim_{x \to 0^+} \frac{\ln(x+1)}{x} = \left(\text{of the form } \frac{0}{0} \right)$						
$ \boxed{a} \ 1 \qquad \boxed{b} \ 0 \qquad \boxed{c} \ -\infty \qquad \boxed{d} \ \infty $						
34) $\lim_{x \to \infty} \frac{\ln x}{x} = \left(\text{ of the form } \frac{\infty}{\infty} \right) \left(\lim_{x \to \infty} \ln x = \infty \right)$						
$\boxed{a} \ 1 \qquad \boxed{b} \ 0 \qquad \boxed{c} \ -\infty \qquad \boxed{d} \ \infty$						
35) $\lim_{x \to 1^+} \frac{1 - x + x \ln x}{(x - 1) \ln x} = \left(\text{of the form } \frac{0}{0} \right)$						
$\boxed{a} \ 2^{-1} \qquad \boxed{b} \ 0 \qquad \boxed{c} \ -\infty \qquad \boxed{d} \ \infty$						
36) $\lim_{x \to \infty} \frac{3^x}{2^x} = \left(\text{ of the form } \frac{\infty}{\infty} \right) \left(\lim_{x \to \infty} a^x = \infty, a > 1, \lim_{x \to \infty} a^x = 0, 0 < a < 1 \right)$						
$a \infty \qquad b 1 \qquad c -\infty \qquad d 0$						
37) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^3} = \left(\text{of the form } \frac{0}{0} \right)$						
$\boxed{a} \propto \boxed{b} 0 \qquad \boxed{c} 1 \qquad \boxed{d} \text{ does not exist}$						
38) $\lim_{x \to 0} \frac{\tan^{-1} x}{x} = \left(\text{of the form } \frac{0}{0} \right)$						
\boxed{a} -1 \boxed{b} 0 \boxed{c} 1 \boxed{d} does not exist						
39) $\lim_{x \to 0^+} \frac{\sqrt{x} - x}{x \sqrt{x}} = \left(\text{of the form } \frac{0}{0} \right)$						
$\begin{bmatrix} a \end{bmatrix} 1 \qquad \begin{bmatrix} b \end{bmatrix} 0 \qquad \begin{bmatrix} c \end{bmatrix} -\infty \qquad \begin{bmatrix} d \end{bmatrix} \infty$						