	ID:	Time start:	Time end:
Name:	Problems section 3.9	Time start.	
1. [prob2] For the function $y = \frac{x^2-2}{x+4}$, calculate the value of y for the following values of			
x: -3, -2, -1,0,1,2,3.			
Ans: 7.0000,1.0000,-0.3333,-0.5000,-0.2000,0.3333,1.0000			
2. [prob8] The length $ u $ (magnitude) of a vector $u = xi + yj + zk$ is given by $ u = \sqrt{x^2 + y^2 + z^2}$.			
Given the vector $\mathbf{u} = 23.5\mathbf{i} - 17\mathbf{j} + 6\mathbf{k}$, determine its length by using element-by element operations and			
the commands: sum and sqrt.			
Ans: 29.6184			
3. [prob14] Define x and y as the vectors x: 1,3,5,7,9 and y: 2,5,8,11,14. Then calculate: $z = x(x^2 - y) - (x - y)^2$.			
2 = x(x - y) - (x - y) Ans: -2,8,76,250,578 □ correct □ not correct			
4. [prob16] The area of the parallelogram shown can be calculated by			
Define the position of points A, B, and C as vectors $A = [2,0], B = [10,3]$			
$ \mathbf{r}_{AB} \times \mathbf{r}_{AC} $. Use the following steps in a script file to calculate the area: Define the position of points A, B, and C as vectors $A = [2,0], B = [10,3]$ and $C = [4,6]$. Determine the vectors \mathbf{r}_{AB} and \mathbf{r}_{AC} from the points. Determine the area by using MATLAB's built-in functions cross, sum, and sqrt.			
Determine the area by using MATLAB's built-in functions cross, sum, $B(10, 3)$			
and sqrt.		-	A(2,0)
Ans: 42		I	
5. [prob18] The dot product can be used for determining the angle between two vectors:			
$\theta = \cos^{-1}\left(\frac{r_1 \cdot r_2}{ r_1 r_2 }\right)$. Find the angle (in degrees) between $r_1 = 3i - 2j + k$ and $r_2 = i + 2j - 4k$.			
Ans: 106.9541° □ correct □ not correct			
6. [prob22] Show that $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$. Do this by first creating a vector x that has the elements:			
5, 3, 2, 1.5, 1.1, 1.001, and 1.00001. Then, create a new vector y in which each element is determined			
from the elements of x by $\frac{x^2-1}{x-1}$. Compare the elements of y with the value 2 (use format long to display			
the numbers).			
Ans: 6.0000000000000, 4.000000000000, 3.000000000000, 2.5000000000000, 2.100000000000,			
2.00099999999918, 2.00001000000827			
7. [prob32] Solve the following system: 3u + 1.5v + w + 0.5x + 4y = -11.75			
3u + 1.5v + w + 0.5x + 4y = -11.75 $-2u + v + 4w - 3.5x + 2y = 19$			
6u - 3v + 2w + 2.5x + y = -23			
u + 4v - 3w + 0.5x - 2y = -1.5 3u + 2v - w + 1.5x - 3y = -3.5			
Ans: $u = -4, v = 2.5, w = 4, x = 1, y = -2$ \Box correct \Box not correct			
8. [prob26] The path of a projectile fired wit		n	
angle θ is described by the equation			
$y = x \tan\theta - \frac{g}{2v^2 \cos^2\theta}$	$ x^2$		
		\mathcal{V}_{\uparrow}	
where $g = 9.81 m/s^2$. Consider the case wh and $v_0 = 110 m/s$. Write a MATLAB script th			, `Q
calculates the distance s travelled by the pro-	-	x v_0	
with 100 elements such that the first eleme	•	Ť,	
calculates the value of y for each value of x ,		ght h_m	200 m
that the projectile reaches (use MATLAB bui		-	
distance <i>x_{hm}</i> where the maximum height is r			S
executed only the values of h_m and x_{hm} are c	•		
Ans: $h_m = 575.3948m$, $x_{hm} = 309.6821m$	orrect 🛛 not correct		