Name:	ID:	Time start:	Time end:
Problems section 3.9			

1. [prob2] For the function $y=\frac{x^{2}-2}{x+4}$, calculate the value of y for the following values of x : $-3,-2,-1,0,1,2,3$.
Ans: $7.0000,1.0000,-0.3333,-0.5000,-0.2000,0.3333,1.0000 \square$ correct \square not correct
2. [prob8] The length $|\boldsymbol{u}|$ (magnitude) of a vector $\boldsymbol{u}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ is given by $|\boldsymbol{u}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Given the vector $\boldsymbol{u}=23.5 \boldsymbol{i}-17 \boldsymbol{j}+6 \boldsymbol{k}$, determine its length by using element-by element operations and the commands: sum and sqrt.
Ans: $29.6184 \square$ correct \square not correct
3. [prob14] Define x and y as the vectors $x: 1,3,5,7,9$ and $y: 2,5,8,11,14$. Then calculate:
$z=x\left(x^{2}-y\right)-(x-y)^{2}$.
Ans: -2,8,76,250,578 \square correct \square not correct
4. [prob16] The area of the parallelogram shown can be calculated by $\left|\mathbf{r}_{A B} \times \mathbf{r}_{A C}\right|$. Use the following steps in a script file to calculate the area: Define the position of points A, B, and C as vectors $A=[2,0], B=[10,3]$ and $C=[4,6]$. Determine the vectors $\mathbf{r}_{A B}$ and $\mathbf{r}_{A C}$ from the points. Determine the area by using MATLAB's built-in functions cross, sum, and sqre.

Ans: $42 \square$ correct \square not correct
5. [prob18] The dot product can be used for determining the angle between two vectors: $\theta=\cos ^{-1}\left(\frac{r_{1} \cdot \boldsymbol{r}_{2}}{\left|r_{1}\right|\left|\boldsymbol{r}_{2}\right|}\right)$. Find the angle (in degrees) between $\boldsymbol{r}_{1}=3 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k}$ and $\boldsymbol{r}_{2}=\boldsymbol{i}+2 \boldsymbol{j}-4 \boldsymbol{k}$.
Ans: $106.9541^{\circ} \quad \square$ correct \square not correct
6. [prob22] Show that $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$. Do this by first creating a vector x that has the elements:
$5,3,2,1.5,1.1,1.001$, and 1.00001 . Then, create a new vector y in which each element is determined from the elements of x by $\frac{x^{2}-1}{x-1}$. Compare the elements of y with the value 2 (use format long to display the numbers).
Ans: $6.000000000000000,4.000000000000000,3.000000000000000,2.500000000000000,2.100000000000000$, 2.000999999999918, 2.000010000000827 \square correct \square not correct
7. [prob32] Solve the following system:

$$
\begin{gathered}
3 u+1.5 v+w+0.5 x+4 y=-11.75 \\
-2 u+v+4 w-3.5 x+2 y=19 \\
6 u-3 v+2 w+2.5 x+y=-23 \\
u+4 v-3 w+0.5 x-2 y=-1.5 \\
3 u+2 v-w+1.5 x-3 y=-3.5
\end{gathered}
$$

Ans: $u=-4, v=2.5, w=4, x=1, y=-2 \quad \square$ correct \square not correct
8. [prob26] The path of a projectile fired with an initial speed v_{0} at an angle θ is described by the equation

$$
y=x \tan \theta-\frac{g}{2 v 0^{2} \cos ^{2} \theta} x^{2}
$$

where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Consider the case where $\theta=75^{\circ}$ and $v_{0}=110 \mathrm{~m} / \mathrm{s}$. Write a MATLAB script that does the following: calculates the distance s travelled by the projectile, creates a vector x with 100 elements such that the first element is 0 and the last is s, calculates the value of y for each value of x, finds the maximum height h_{m} that the projectile reaches (use MATLAB built-in function max) and the distance $x_{h m}$ where the maximum height is reached. When the script is executed only the values of h_{m} and $x_{h m}$ are displayed.
Ans: $h_{m}=575.3948 \mathrm{~m}, x_{h m}=309.6821 \mathrm{~m} \quad \square$ correct \square not correct

