1) $\lim_{x \to 3^+} \frac{2}{x-3} =$ Solution:	2) $\lim_{x \to 3^{-}} \frac{2}{x - 3} =$ Solution:
If $x \to 3^+$, then $x > 3 \implies x - 3 > 0$	If $x \to 3^-$, then $x < 3 \implies x - 3 < 0$
$\therefore \lim_{x \to 3^+} \frac{1}{x - 3} = \infty$	$\therefore \lim_{x \to 3^-} \frac{2}{x-3} = -\infty$
3) $\lim_{x \to 3^+} \frac{-2}{x-3} =$	4) $\lim_{x \to 3^-} \frac{-2}{x-3} =$
Solution: If $x \to 3^+$, then $x > 3 \implies x - 3 > 0$	Solution: If $x \to 3^-$, then $x < 3 \implies x - 3 < 0$
$\therefore \lim_{x \to 3^+} \frac{-2}{x-3} = -\infty$	$\therefore \lim_{x \to 3^-} \frac{2}{x-3} = \infty$
5) $\lim_{x \to -3^+} \frac{2}{x+3} =$	6) $\lim_{x \to -3^-} \frac{2}{x+3} =$
Solution: If $x \to -3^+$, then $x > -3 \implies x + 3 > 0$	Solution: If $x \to -3^-$, then $x < -3 \implies x + 3 < 0$
$\therefore \lim_{x \to -3^+} \frac{2}{x+3} = \infty$	$\therefore \lim_{x \to -3^-} \frac{2}{x+3} = -\infty$
7) $\lim_{x \to 2^+} \frac{3x - 1}{x - 2} =$	8) $\lim_{x \to 2^{-}} \frac{3x - 1}{x - 2} =$
Solution: If $x \to 2^+$, then $x > 2 \implies x - 2 > 0$ and $3x - 1 > 0$	Solution: If $x \to 2^-$, then $x < 2 \implies x - 2 < 0$ and $3x - 1 > 0$
$\therefore \lim_{x \to 2^+} \frac{3x - 1}{x - 2} = \infty$	$\therefore \lim_{x \to 2^-} \frac{3x - 1}{x - 2} = -\infty$
9) $\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} =$	10) $\lim_{x \to -2^{-}} \frac{1-x}{(x+2)^2} =$
Solution: If $x \to -2^+$, then $x > -2$	Solution: If $x \to -2^-$, then $x < -2$
$\implies 1 - x > 0 \text{ and } (x + 2)^2 > 0$	$\implies 1 - x > 0 \text{ and } (x + 2)^2 > 0$
$\therefore \lim_{x \to -2^+} \frac{1-x}{(x+2)^2} = \infty$	$\therefore \lim_{x \to -2^+} \frac{1-x}{(x+2)^2} = \infty$
11) $\lim_{x \to -2^+} \frac{x-1}{(x+2)^2} =$	12) $\lim_{x \to -2^-} \frac{x-1}{(x+2)^2} =$
Solution: If $x \to -2^+$, then $x > -2$	Solution: If $x \to -2^-$, then $x < -2$
$\Rightarrow x - 1 < 0 \text{ and } (x + 2)^2 > 0$ $\therefore \lim_{x \to -2^+} \frac{x - 1}{(x + 2)^2} = -\infty$	$\Rightarrow x-1 < 0 \text{ and } (x+2)^2 > 0$ $\therefore \lim_{x \to -2^-} \frac{x-1}{(x+2)^2} = -\infty$
$ 13) \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = $	14) $\lim_{x \to 2^{-}} \frac{6x - 1}{x^2 - 4} =$
Solution: If $x \to 2^+$, then $x^2 > 4$ $\implies x^2 - 4 > 0$ and $6x - 1 > 0$	Solution: If $x \to 2^-$, then $x^2 < 4$ $\implies x^2 - 4 < 0$ and $6x - 1 > 0$
$\Rightarrow x^2 - 4 > 0 \text{ and } 6x - 1 > 0$ $\therefore \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = \infty$	$\Rightarrow x^2 - 4 < 0 \text{ and } 6x - 1 > 0$ $\therefore \lim_{x \to 2^+} \frac{6x - 1}{x^2 - 4} = -\infty$

$$\begin{aligned} 15) \lim_{x\to\infty^{-1}} \frac{6x-1}{2^2-4} &= \\ \frac{5olution:}{|t|x||x||-2^2-4} &= \\ \frac{5olution:}{|t|x||x|-2^2-4} &= \\ &\Rightarrow x^2-4 < 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-4} &= \\ &\Rightarrow x^2-4 < 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-4} &= \\ &\Rightarrow x^2-4 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-4} &= \\ &= x^2-4 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-4} &= \\ &= \frac{6x-1}{x^2-x-6} &= \\ &= \frac{6x-1}{(x-3)(x+2)} \\ &\text{if } x \to -2^-, \text{ then } x < -2 \\ &\Rightarrow x-3 < 0, x+2 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-x-6} &= \\ &= \frac{6x-1}{(x-3)(x+2)} \\ &\text{if } x \to -2^-, \text{ then } x > -2 \\ &\Rightarrow x-3 < 0, x+2 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-x-6} &= \\ &= \frac{6x-1}{(x-3)(x+2)} \\ &\text{if } x \to -2^+, \text{ then } x > -2 \\ &\Rightarrow x-3 < 0, x+2 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-x-6} &= \\ &= \frac{6x-1}{(x-3)(x+2)} \\ &\text{if } x \to -2^+, \text{ then } x > -2 \\ &\Rightarrow x-3 < 0, x+2 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-x-6} &= \\ &= \frac{6x-1}{(x-3)(x+2)} \\ &\text{if } x \to -2^+, \text{ then } x > -2 \\ &\Rightarrow x-3 < 0, x+2 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{6x-1}{x^2-x-6} &= \\ &= \frac{6x-1}{(x-3)(x+2)} \\ &\text{if } x \to -2^+, \text{ then } x > 3 \\ &= x-3 < 0, x+2 > 0 \text{ and } 6x-1 < 0 \\ & \cdot \lim_{x\to\infty^{-1}} \frac{1}{x^2-x-6} &= \\ &= \frac{200 \lim$$

26) The vertical asymptote of $f(x) = \frac{7-x}{x^2-5x+6}$ is 25) The vertical asymptote of $f(x) = \frac{3-x}{x^2-x-6}$ is Solution: Solution: $f(x) = \frac{3-x}{x^2 - x - 6} = \frac{3-x}{(x-3)(x+2)} = \frac{-(x-3)}{(x-3)(x+2)}$ $f(x) = \frac{7-x}{x^2 - 5x + 6} = \frac{7-x}{(x-3)(x-2)}$ We see that the function f(x) is not defined when $=-\frac{1}{x+2}$ -3 = 0 or $x - 2 = 0 \implies x = 3$ or x = 2. Since $\lim_{x \to 3^+} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 3^+} \frac{7 - x}{(x - 3)(x - 2)} = \infty$ We see that the function f(x) is not defined when $x^{2} - x - 6 = 0 \implies (x - 3)(x + 2) = 0$ \Rightarrow x = 3 or x = -2. Since $\lim_{x \to 3^{-}} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 3^{-}} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$ $\lim_{x \to 3} \frac{3-x}{x^2 - x - 6} = \lim_{x \to 3} \frac{3-x}{(x - 3)(x + 2)}$ $= \lim_{x \to 3} \frac{-(x - 3)}{(x - 3)(x + 2)} = \lim_{x \to 3} \frac{-1}{x + 2} = -\frac{1}{5}$ and $\lim_{x \to 2^+} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 2^+} \frac{7 - x}{(x - 3)(x - 2)} = -\infty$ $\lim_{x \to 2^-} \frac{7 - x}{x^2 - 5x + 6} = \lim_{x \to 2^-} \frac{7 - x}{(x - 3)(x - 2)} = \infty$ then, x = 3 is a removable discontinuity. $\lim_{x \to -2^+} \frac{3-x}{x^2 - x - 6} = \lim_{x \to -2^+} \frac{3-x}{(x-3)(x+2)} = \infty$ then, x = 3 and x = 2 are vertical asymptotes. and $\lim_{x \to -2^{-}} \frac{3-x}{x^2 - x - 6} = \lim_{x \to -2^{-}} \frac{3-x}{(x-3)(x+2)} = -\infty$ then, x = -2 is a vertical asymptote only. 27) The vertical asymptote of $f(x) = \frac{x-7}{x^2+5x+6}$ is 28) The vertical asymptote of $f(x) = \frac{x-7}{x^2+3x}$ is Solution: Solution: $f(x) = \frac{x-7}{x^2+5x+6} = \frac{x-7}{(x+3)(x+2)}$ $f(x) = \frac{x-7}{x^2+3x} = \frac{x-7}{x(x+3)}$ We see that the function f(x) is not defined when We see that the function f(x) is not defined when = 0 or $x + 3 = 0 \implies x = 0$ or x = -3. Since +3 = 0 or $x + 2 = 0 \implies x = -3$ or x = -2. $\lim_{x \to -3^+} \frac{x-7}{x^2+3x} = \lim_{x \to -3^+} \frac{x-7}{x(x+3)} = \infty$ $\lim_{x \to -3^-} \frac{x-7}{x^2+3x} = \lim_{x \to -3^-} \frac{x-7}{x(x+3)} = -\infty$ Since $\lim_{x \to -3^+} \frac{x-7}{x^2 + 5x + 6} = \lim_{x \to -3^+} \frac{x-7}{(x+3)(x+2)} = \infty$ $\lim_{x \to -3^-} \frac{x-7}{x^2 + 5x + 6} = \lim_{x \to -3^-} \frac{x-7}{(x+3)(x+2)} = -\infty$ and $\lim_{x \to 0^+} \frac{x-7}{x^2+3x} = \lim_{x \to 0^+} \frac{x-7}{x(x+3)} = -\infty$ $\lim_{x \to 0^-} \frac{x-7}{x^2+3x} = \lim_{x \to 0^-} \frac{x-7}{x(x+3)} = \infty$ and $\lim_{x \to -2^+} \frac{x-7}{x^2 + 5x + 6} = \lim_{x \to -2^+} \frac{x-7}{(x+3)(x+2)} = -\infty$ $\lim_{x \to -2^{-}} \frac{x-7}{x^2+5x+6} = \lim_{x \to -2^{-}} \frac{x-7}{(x+3)(x+2)} = \infty$ then, x = -3 and x = 0 are vertical asymptotes. then, x = -3 and x = -2 are vertical asymptotes.

29) The vertical asymptote of $f(x) = \frac{x-7}{x^2-3x}$ is	30) The vertical asymptotes of $f(x) = \frac{2x^2+1}{x^2-9}$ are
Solution:	Solution:
$f(x) = \frac{x-7}{x^2-3x} = \frac{x-7}{x(x-3)}$	
$\chi = 0 \chi - \chi (\chi = 0)$	$f(x) = \frac{2x^2 + 1}{x^2 - 9} = \frac{2x^2 + 1}{(x + 3)(x - 3)}$
We see that the function $f(x)$ is not defined when	We see that the function $f(x)$ is not defined when
$= 0 \text{ or } x - 3 = 0 \implies x = 0 \text{ or } x = 3$. Since $x - 7 = x - 7$	$x^2 - 9 = 0 \implies x = \pm 3$. Since
$\lim_{x \to 3^+} \frac{x-7}{x^2 - 3x} = \lim_{x \to 3^+} \frac{x-7}{x(x-3)} = -\infty$	$\lim_{x \to 3^+} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to 3^+} \frac{2x^2 + 1}{(x + 3)(x - 3)} = \infty$
$\lim_{x \to 3^{-}} \frac{x - 7}{x^2 - 3x} = \lim_{x \to 3^{-}} \frac{x - 7}{x(x - 3)} = \infty$	
$\lim_{x \to 3^{-}} \frac{1}{x^{2} - 3x} - \lim_{x \to 3^{-}} \frac{1}{x(x - 3)} = \infty$	$\lim_{x \to 3^{-}} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to 3^{-}} \frac{2x^2 + 1}{(x + 3)(x - 3)} = -\infty$
and	$x \to 3$ $x^2 = -9$ $x \to 3$ $(x + 5)(x - 5)$ and
$\lim_{x \to 0^+} \frac{x-7}{x^2 - 3x} = \lim_{x \to 0^+} \frac{x-7}{x(x-3)} = \infty$	
	$\lim_{x \to -3^+} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to -3^+} \frac{2x^2 + 1}{(x + 3)(x - 3)} = -\infty$
$\lim_{x \to 0^{-}} \frac{x-7}{x^2 - 3x} = \lim_{x \to 0^{-}} \frac{x-7}{x(x-3)} = -\infty$	$\lim_{x \to -3^{-}} \frac{2x^2 + 1}{x^2 - 9} = \lim_{x \to -3^{-}} \frac{2x^2 + 1}{(x + 3)(x - 3)} = \infty$
then, $x = 3$ and $x = 0$ are vertical asymptotes.	then, $x = \pm 3$ are vertical asymptotes.
31) The function $f(x) = \frac{x+1}{x^2-9}$ is continuous at $a = 2$	32) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at
because	$a = \pm 3$ because we know that $D_f = \mathbb{R} \setminus \{\pm 3\}$,
$1 - f(2) = \frac{(2)+1}{(2)^2 - 9} = \frac{3}{-5} = -\frac{3}{5}$	so $\{\pm 3\} \notin D_f$.
$2 - \lim_{x \to 3^{-}} \frac{x+1}{x^2 - 9} = \lim_{x \to 2^{-}} \frac{(2)+1}{(2)^2 - 9} = \frac{3}{-5} = -\frac{3}{5}$	
$3 - \lim_{x \to 2} \frac{x+1}{x^2 - 9} = f(2)$	33) The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at
	± 3 because $\{\pm 3\} \notin D_f$.
We know that $D_f = \mathbb{R} \setminus \{\pm 3\}$, so $\{2\} \in D_f$.	
Note: Any function is continuous on its domain.	
34) The function $f(x) = \frac{x+1}{x^2-9}$ is continuous on its	$(\sin 3x) = (\sin 3x) + (\cos 3x) + (\sin 3x) + ($
domain which is $D_f = \mathbb{R} \setminus \{\pm 3\}.$	35) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0\\ 3, & x = 0 \end{cases}$ is continuous at
, (<u> </u>	a = 0 because
	1- $f(0) = 3$
	2- $\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3$
	3- $\lim_{x \to 0} f(x) = f(0)$
$\int \frac{\sin 3x}{x} - x \neq 0$	$(2x^2 - 3x + 1)$
36) The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0\\ 5, & x = 0 \end{cases}$ is discontinuous	37) The function $f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1}, & x \neq 1 \\ 7, & x = 1 \end{cases}$ is
at $a = 0$ because	discontinuous at $a = 1$ because
1- $f(0) = 5$	1- $f(1) = 7$
2- $\lim_{x \to 0} \frac{\sin 3x}{x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3$	2- $\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x - 1} = \lim_{x \to 1} \frac{(2x - 1)(x - 1)}{x - 1} = \lim_{x \to 1} (2x - 1) = 1$
3- $\lim_{x \to 0} f(x) \neq f(0)$	$3-\lim_{x \to 1} f(x) \neq f(1)$
$x \rightarrow 0$ $(2x^2 - 3x + 1)$	
38) The function $f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$ is	39) The function $f(x) = \frac{x^2 - x - 2}{x^{-2}}$ is discontinuous at
	$a = 2$ because $\{2\} \notin D_f$.
continuous at $a = 1$ because 1- $f(1) = 1$	
2- $\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x - 1} = \lim_{x \to 1} \frac{(2x - 1)(x - 1)}{x - 1} = \lim_{x \to 1} (2x - 1) = 1$	
$\begin{vmatrix} z & \min_{x \to 1} & z - 1 & \min_{x \to 1} & z - 1 & \min_{x \to 1} & z - 1 \\ z_{x} & \lim_{x \to 1} f(x) = f(1) \end{vmatrix}$	
3- $\lim_{x \to 1} f(x) = f(1)$	
	·

(2r+3, r>2)	$x \rightarrow x \rightarrow$
40) The function $f(x) = \begin{cases} 2x + 3, \ x > 2 \\ 3x + 1, \ x \le 2 \end{cases}$ is	41) The function $f(x) = \frac{x+3}{\sqrt{x^2-4}}$ is continuous on its
continuous at $a = 2$ because	domain where $f(x)$ is defined, we mean that
1- $f(2) = 3(2) + 1 = 7$	$x^2 - 4 > 0 \implies x^2 > 4 \implies \sqrt{x^2} > \sqrt{4}$
2- $\lim_{x \to 2^+} (2x + 3) = 2(2) + 3 = 7$	$\Rightarrow x > 2 \iff x > 2 \text{ or } x < -2$
$\lim_{x \to 2^{-}} (3x + 1) = 3(2) + 1 = 7$	Hence,
$\therefore \lim_{x \to 2} f(x) = 7$	$D_f = (-\infty, -2) \cup (2, \infty) .$
3- $\lim_{x \to 2} f(x) = f(2)$	
42) The function $f(x) = \sqrt{x^2 - 4}$ is continuous on its	43) The function $f(x) = \sqrt{4 - x^2}$ is continuous on its
domain where $f(x)$ is defined, we mean that	domain where $f(x)$ is defined, we mean that
$x^2 - 4 \ge 0 \implies x^2 \ge 4 \implies \sqrt{x^2} \ge \sqrt{4}$	$4 - x^2 \ge 0 \implies -x^2 \ge -4 \implies x^2 \le 4$
$\Rightarrow x \ge 2 \iff x \ge 2 \text{ or } x \le -2$	$\Rightarrow \sqrt{x^2} \le \sqrt{4} \Rightarrow x \le 2 \Leftrightarrow -2 \le x \le 2$
Hence,	Hence,
$D_f = (-\infty, -2] \cup [2, \infty) .$	$D_f = [-2,2] .$
44) The function $f(x) = \frac{x+3}{\sqrt{4-x^2}}$ is continuous on its	45) The function $f(x) = \frac{x+1}{x^2-4}$ is continuous on its
domain where $f(x)$ is defined, we mean that	domain where $f(x)$ is defined, we mean that
$4 - x^2 > 0 \implies -x^2 > -4 \implies x^2 < 4$	$x^2 - 4 \neq 0 \implies x^2 \neq 4 \implies x \neq \pm 2$
$\Rightarrow \sqrt{x^2} < \sqrt{4} \Rightarrow x < 2 \Leftrightarrow -2 < x < 2$	Hence,
Hence,	$D_f = \mathbb{R} \setminus \{\pm 2\}$
$D_f = (-2,2).$ 46) The function $f(x) = \log_2(x+2)$ is continuous on	$= (-\infty, -2) \cup (-2, 2) \cup (2, \infty) = \{x \in \mathbb{R} : x \neq \pm 2\}.$
	47) The function $f(x) = \sqrt{x-1} + \sqrt{x+4}$ is continuous
its domain where $f(x)$ is defined, we mean that	on its domain where $f(x)$ is defined, we mean that
$x + 2 > 0 \implies x > -2$ Hence,	$x-1 \ge 0$ and $x+4 \ge 0 \implies x \ge 1 \cap x \ge -4$
$D_f = (-2, \infty)$.	Hence, $D_{\rm r} = \begin{bmatrix} 1 & \infty \end{bmatrix}$
48) The function $f(x) = 5^x$ is continuous	$D_f = [1, \infty).$ 49) The function $f(x) = e^x$ is continuous
on its domain .	on its domain .
Hence,	Hence,
$D_f = \mathbb{R} = (-\infty, \infty)$.	$D_f = \mathbb{R} = (-\infty, \infty)$.
50) The function $f(x) = \sin^{-1}(3x - 5)$ is continuous	51) The function $f(x) = \cos^{-1}(3x + 5)$ is continuous
on its domain where $f(x)$ is defined, we mean that	on its domain where $f(x)$ is defined, we mean that
$-1 \le 3x - 5 \le 1 \Leftrightarrow 4 \le 3x \le 6 \Leftrightarrow \frac{4}{3} \le x \le 2 .$	$-1 \le 3x + 5 \le 1 \iff -6 \le 3x \le -4 \iff -2 \le x \le -\frac{4}{3}.$
Hence,	Hence,
$D_f = \left[\frac{4}{3}, 2\right].$	$D_f = \left[-2, -\frac{4}{3}\right].$
52) The number c that makes $f(x) = \begin{cases} c+x, x > 2\\ 2x-c, x < 2 \end{cases}$	53) The number c that makes
is continuous at $x = 2$ is	$f(x) = \begin{cases} cx^2 - 2x + 1, & x \le -1 \\ 3x + 2, & x > -1 \end{cases}$ is continuous at -1 is
Solution: $\lim_{x \to \infty} f(x)$ exists if	Solution:
$\lim_{x \to 2} f(x)$ exists if	$\lim_{x \to -1} f(x) \text{ exists if}$
$ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x) $	$ \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} f(x) $
$\lim_{x \to 2^+} (c+x) = \lim_{x \to 2^-} (2x-c)$ c+2=4-c	$\lim_{x \to -1^+} (3x + 2) = \lim_{x \to -1^-} (cx^2 - 2x + 1)$
	$3(-1) + 2 = c(-1)^2 - 2(-1) + 1$
c + c = 4 - 2	-1 = c + 3
2c = 2	c = -1 - 3
<i>c</i> = 1	c = -4
	5

55) The value c that makes $f(x) = \begin{cases} cx^2 + 2x, x \le 2\\ x^3 - cx, x > 2 \end{cases}$ 54) The number *c* that makes $\begin{cases} \frac{\sin cx}{x} + 2x - 1, \ x < 0\\ 3x + 4, \ x \ge 0 \end{cases}$ is continuous at 0 is f(x) =is continuous at 2 is Solution: Solution: $\lim f(x)$ exists if $\lim_{x\to 0} f(x) \text{ exists if}$ $\lim_{\substack{x \to 2^+ \\ x \to 2^+}} f(x) = \lim_{\substack{x \to 2^- \\ x \to 2^-}} f(x)$ $\lim_{x \to 2^+} (x^3 - cx) = \lim_{\substack{x \to 2^- \\ x \to 2^-}} (cx^2 + 2x)$ $(2)^3 - c(2) = c(2)^2 + 2(2)$ $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x)$ $\lim_{x \to 0^+} (3x + 4) = \lim_{x \to 0^-} \left(\frac{\sin cx}{x} + 2x - 1 \right)$ 3(0) + 4 = c(1) + 2(0) - 18 - 2c = 4c + 4-2c - 4c = 4 - 84 = c - 1c = 4 + 1-6c = -4 $c = \frac{-4}{-6}$ $c = \frac{2}{3}$ c = 556) The number *c* that makes $f(x) = \begin{cases} c^2 x^2 - 1, & x \le 3 \\ x + 5, & x > 3 \end{cases}$ 57) The number c that makes $f(x) = \begin{cases} x-2, x > 5\\ cx-3, x \le 5 \end{cases}$ is continuous at 5 is is continuous at 3 is Solution: Solution: $\lim_{x \to 5} f(x) \text{ exists if}$ $\lim f(x)$ exists if $\lim_{\substack{x \to 3^+}} f(x) = \lim_{\substack{x \to 3^-}} f(x)$ $\lim_{\substack{x \to 3^+}} (x+5) = \lim_{\substack{x \to 2^-}} (c^2 x^2 - 1)$ $\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{-}} f(x)$ $\lim_{x \to 5^+} (x - 2) = \lim_{x \to 5^-} (cx - 3)$ $(3) + 5 = c^2(3)^2 - 1$ (5) - 2 = c(5) - 33 = 5c - 3 $8 = 9c^2 - 1$ 5c = 3 + 3 $9c^2 = 8 + 1$ 5c = 6 $c^2 = 1$ $c = \frac{6}{5}$ $c = \pm 1$ 58) The number c that makes $f(x) = \begin{cases} x+3, x > -1 \\ 2x-c, x \leq -1 \end{cases}$ is continuous at -1 is Solution: $\lim_{x \to -1} f(x) \text{ exists if}$ $\lim_{\substack{x \to -1^+ \\ x \to -1^+}} f(x) = \lim_{\substack{x \to -1^- \\ x \to -1^-}} f(x)$ (-1) + 3 = 2(-1) - c2 = -2 - cc = -2 - 2c = -4