Workshop Solutions to Sections 3.1 and 3.2

1) $\begin{aligned} \lim _{x \rightarrow-2}\left(x^{3}-2 x+1\right) & =(-2)^{3}-2(-2)+1 \\ & =-8+4+1=-3 \end{aligned}$	$\text { 2) } \begin{aligned} \lim _{x \rightarrow 2}\left(3 x^{2}+x-4\right) & =3(2)^{2}+(2)-4 \\ & =12+2-4=10 \end{aligned}$
3) $\begin{aligned} \lim _{x \rightarrow 1}\left(x^{2}+3 x-5\right)^{3} & =\left((1)^{2}+3(1)-5\right)^{3} \\ & =(1+3-5)^{3}=(-1)^{3}=-1 \end{aligned}$	4) $\begin{aligned} \lim _{x \rightarrow-2}\left(2 x^{3}+3 x^{2}+5\right) & =2(-2)^{3}+3(-2)^{2}+5 \\ & =2(-8)+3(4)+5 \\ & =-16+12+5=1 \end{aligned}$
5) $\lim _{x \rightarrow-2} \frac{x^{2}-2}{x-2}=\frac{(-2)^{2}-2}{(-2)-2}=\frac{4-2}{-2-2}=\frac{2}{-4}=-\frac{1}{2}$	6) $\lim _{x \rightarrow 2} \frac{x^{3}+5}{x^{2}+1}=\frac{(2)^{3}+5}{(2)^{2}+1}=\frac{8+5}{4+1}=\frac{13}{5}$
$\text { 7) } \begin{gathered} \lim _{x \rightarrow 0} \frac{x^{2}+3 x+5}{x^{2}-3}=\frac{(0)^{2}+3(0)+5}{(0)^{2}-3}=\frac{0+0+5}{0-3} \\ =\frac{5}{-3}=-\frac{5}{3} \end{gathered}$	8) $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}+x-5}=\frac{(1)-1}{(1)^{2}+(1)-5}=\frac{1-1}{1+1-5}=\frac{0}{-3}=0$
$\text { 9) } \begin{gathered} \lim _{x \rightarrow-1} \sqrt{x^{3}-10 x+7}=\sqrt{(-1)^{3}-10(-1)+7} \\ =\sqrt{-1+10+7}=\sqrt{16}=4 \end{gathered}$	$\text { 10) } \begin{aligned} & \lim _{x \rightarrow-1} \frac{1-(x+4)^{-2}}{x-2}=\frac{1-((-1)+4)^{-2}}{(-1)-2} \\ &= \frac{1-(-1+4)^{-2}}{-1-2}=\frac{1-(3)^{-2}}{-3}=\frac{1-\frac{1}{3^{2}}}{-3} \\ &=\frac{1-\frac{1}{9}}{-3}=\frac{\frac{8}{9}}{-3}=\frac{8}{9} \times \frac{1}{-3}=\frac{8}{-27}=-\frac{8}{27} \end{aligned}$
$\text { 11) } \begin{aligned} \lim _{x \rightarrow-1} \frac{x^{3}+2 x}{8-2 x} & =\frac{(-1)^{3}+2(-1)}{8-2(-1)}=\frac{-1-2}{8+2}=\frac{-3}{10} \\ & =-\frac{3}{10} \end{aligned}$	12) $\lim _{x \rightarrow 4} \frac{x^{2}-3 x}{5+x}=\frac{(4)^{2}-3(4)}{5+(4)}=\frac{16-12}{5+4}=\frac{4}{9}$
13) $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{5+x}=\frac{(4)^{2}-4(4)}{5+(4)}=\frac{16-16}{5+4}=\frac{0}{9}=0$	$\text { 15) } \begin{aligned} \lim _{x \rightarrow 0} \frac{x^{3}-5 x^{2}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{x^{2}(x-5)}{x^{2}} \\ & =\lim _{x \rightarrow 0}(x-5)=(0)-5=-5 \end{aligned}$
14) $\lim _{x \rightarrow 4} \frac{3^{-1}-(2 x-5)^{-1}}{4-x}=\lim _{x \rightarrow 4} \frac{\frac{1}{3}-\frac{1}{2 x-5}}{4-x}$	$\text { 16) } \begin{aligned} \lim _{x \rightarrow 6} \frac{x-6}{x^{2}-36} & =\lim _{x \rightarrow 6} \frac{x-6}{(x-6)(x+6)}=\lim _{x \rightarrow 6} \frac{1}{x+6} \\ & =\frac{1}{(6)+6}=\frac{1}{12} \end{aligned}$
$\begin{aligned} & \lim _{x \rightarrow 4} \frac{4-x}{2 x-8} \\ & 3(2 x-5)(4-x) \\ & 2(x-4) \end{aligned}$	17) $\begin{gathered} \lim _{x \rightarrow 6} \frac{x^{2}-36}{x-6}=\lim _{x \rightarrow 6} \frac{(x-6)(x+6)}{x-6}=\lim _{x \rightarrow 6}(x+6) \\ =(6)+6=12 \end{gathered}$
$\begin{aligned} & =\lim _{x \rightarrow 4} \frac{-2(4-x)}{3(2 x-5)(4-x)}=\lim _{x \rightarrow 4} \frac{-2}{3(2 x-5)} \\ & =\frac{-2}{3(2(4)-5)}=\frac{-2}{3(8-5)}=\frac{-2}{9}=-\frac{2}{9} \end{aligned}$	$\text { 18) } \begin{gathered} \lim _{x \rightarrow-6} \frac{x+6}{x^{2}-36}=\lim _{x \rightarrow-6} \frac{x+6}{(x-6)(x+6)}=\lim _{x \rightarrow-6} \frac{1}{x-6} \\ =\frac{1}{(-6)-6}=\frac{1}{-12}=-\frac{1}{12} \end{gathered}$
$\text { 19) } \begin{aligned} \lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{x-3} \\ & =\lim _{x \rightarrow 3}\left(x^{2}+3 x+9\right)=(3)^{2}+3(3)+9 \\ & =9+9+9=27 \end{aligned}$	$\text { 20) } \begin{aligned} \lim _{x \rightarrow 3} \frac{x-3}{x^{3}-27} & =\lim _{x \rightarrow 3} \frac{x-3}{(x-3)\left(x^{2}+3 x+9\right)} \\ & =\lim _{x \rightarrow 3} \frac{1}{x^{2}+3 x+9}=\frac{1}{(3)^{2}+3(3)+9} \\ & =\frac{1}{9+9+9}=\frac{1}{27} \end{aligned}$

32) If $2 x \leq f(x) \leq 3 x^{2}-8$, then

$$
\lim _{x \rightarrow 2} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 2} 2 x=2(2)=4
$$

and

$$
\lim _{x \rightarrow 2}\left(3 x^{2}-8\right)=3(2)^{2}-8=12-8=4
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 2} f(x)=4
$$

34) $\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x}\right)\right]=$

We know that the sine of any angle is between
-1 and 1. So,

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

Now, multiply throughout by x, we get

$$
-x \leq x \sin \left(\frac{1}{x}\right) \leq x
$$

But $\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(-x)=0$.
It follows from the Sandwich Theorem that
$\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x}\right)\right]=0$
36) If $4(x-1) \leq f(x) \leq x^{3}+x-2$, then

$$
\lim _{x \rightarrow 1} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 1}(4(x-1))=4((1)-1)=4 \times 0=0
$$

and

$$
\lim _{x \rightarrow 1}\left(x^{3}+x-2\right)=(1)^{3}+(1)-2=1+1-2=0
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 1} f(x)=0
$$

33) $\lim _{x \rightarrow 0}\left[x \cos \left(x+\frac{1}{x}\right)\right]=$

We know that the cosine of any angle is between -1 and 1. So,

$$
-1 \leq \cos \left(x+\frac{1}{x}\right) \leq 1
$$

Now, multiply throughout by x, we get

$$
-x \leq x \cos \left(x+\frac{1}{x}\right) \leq x
$$

But $\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(-x)=0$.
It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 0}\left[x \cos \left(x+\frac{1}{x}\right)\right]=0
$$

35) If $\frac{x^{2}+1}{x-1} \leq f(x) \leq x-1$, then

$$
\lim _{x \rightarrow 0} f(x)=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+1}{x-1}=\frac{(0)^{2}+1}{(0)-1}=\frac{1}{-1}=-1
$$

and

$$
\lim _{x \rightarrow 0}(x-1)=(0)-1=-1
$$

It follows from the Sandwich Theorem that

$$
\lim _{x \rightarrow 0} f(x)=-1
$$

37) If

$$
\lim _{x \rightarrow 3} \frac{f(x)+4}{x-1}=3
$$

then

$$
\lim _{x \rightarrow 3} f(x)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{f(x)+4}{x-1}= & \frac{\lim _{x \rightarrow 3}(f(x)+4)}{\lim _{x \rightarrow 3}(x-1)}=\frac{\lim _{x \rightarrow 3} f(x)+\lim _{x \rightarrow 3}(4)}{\lim _{x \rightarrow 3}(x)-\lim _{x \rightarrow 3}(1)} \\
& =\frac{\lim _{x \rightarrow 3} f(x)+4}{3-1}=\frac{\lim _{x \rightarrow 3} f(x)+4}{2}
\end{aligned}
$$

Now

$$
\frac{\lim _{x \rightarrow 3} f(x)+4}{2}=3
$$

$$
\lim _{x \rightarrow 3} f(x)+4=6 \Leftrightarrow \lim _{x \rightarrow 3} f(x)=2
$$

$$
\text { 38) } \begin{aligned}
\lim _{x \rightarrow 2} \frac{2^{-1}-(3 x-4)^{-1}}{2} & =x \\
& =\lim _{x \rightarrow 2} \frac{\frac{1}{2}-\frac{1}{3 x-4}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3 x-4-2}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3 x-6}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3(x-2)}{2(3 x-4)}}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{3(x-2)}{2(3 x-4)(2-x)} \\
& =\lim _{x \rightarrow 2} \frac{-3(2-x)}{2(3 x-4)(2-x)}=\lim _{x \rightarrow 2} \frac{-3}{2(3 x-4)} \\
& =\frac{-3}{2(3(2)-4)}=\frac{-3}{2 \times 2}=-\frac{3}{4}
\end{aligned}
$$

40) If

$$
\lim _{x \rightarrow 1} \frac{f(x)+3 x}{x^{2}-5 f(x)}=1
$$

then

$$
\lim _{x \rightarrow 1} f(x)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{f(x)+3 x}{x^{2}-5 f(x)} & =\frac{\lim _{x \rightarrow 1}(f(x)+3 x)}{\lim _{x \rightarrow 1}\left(x^{2}-5 f(x)\right)} \\
& =\frac{\lim _{x \rightarrow 1} f(x)+\lim _{x \rightarrow 1}(3 x)}{\lim _{x \rightarrow 1}\left(x^{2}\right)-\lim _{x \rightarrow 1}(5 f(x))} \\
& =\frac{\lim _{x \rightarrow 1} f(x)+3(1)}{(1)^{2}-5 \lim _{x \rightarrow 1} f(x)}=\frac{\lim _{x \rightarrow 1} f(x)+3}{1-5 \lim _{x \rightarrow 1} f(x)}
\end{aligned}
$$

Now

$$
\frac{\lim _{x \rightarrow 1} f(x)+3}{1-5 \lim _{x \rightarrow 1} f(x)}=1
$$

$\lim _{x \rightarrow 1} f(x)+3=(1)\left(1-5 \lim _{x \rightarrow 1} f(x)\right)$

$$
\begin{aligned}
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)+3=1-5 \lim _{x \rightarrow 1} f(x) \\
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)+5 \lim _{x \rightarrow 1} f(x) \stackrel{1-3}{=} \\
& \Leftrightarrow 6 \lim _{x \rightarrow 1} f(x)=-2 \\
& \Leftrightarrow \lim _{x \rightarrow 1} f(x)=\frac{-2}{6}=-\frac{1}{3}
\end{aligned}
$$

39) $\lim _{x \rightarrow 0} \frac{(x+1)^{3}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(x^{3}+3 x^{2}+3 x+1\right)-1}{x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x^{3}+3 x^{2}+3 x}{x} \\
& =\lim _{x \rightarrow 0} \frac{x\left(x^{2}+3 x+3\right)}{x}=\lim _{x \rightarrow 0}\left(x^{2}+3 x+3\right) \\
& =(0)^{2}+3(0)+3=3
\end{aligned}
$$

41) $\lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}+x-20}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{(x-2)(x-4)}{(x-4)(x+5)} \\
& =\lim _{x \rightarrow 4} \frac{x-2}{x+5}=\frac{(4)-2}{(4)+5}=\frac{2}{9}
\end{aligned}
$$

42) $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-x-6}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{(x-3)(x+2)} \\
& =\lim _{x \rightarrow-2} \frac{x^{2}-2 x+4}{x-3}=\frac{(-2)^{2}-2(-2)+4}{(-2)-3} \\
& =\frac{4+4+4}{-5}=\frac{12}{-5}=-\frac{12}{5}
\end{aligned}
$$

43) $\lim _{x \rightarrow 1}\left[\frac{x^{2}-2}{x+4}+x^{2}-2 x\right]=\frac{(1)^{2}-2}{(1)+4}+(1)^{2}-2(1)$

$$
=\frac{1-2}{1+4}+1-2=\frac{-1}{5}-1=\frac{-1-5}{5}=-\frac{6}{5}
$$

44) $\begin{aligned} & \lim _{x \rightarrow-2} \frac{4 x^{2}+}{}+6 x-4 \\ & 2 x^{2}-8 \\ &=\lim _{x \rightarrow-2} \frac{2\left(2 x^{2}+3 x-2\right)}{2\left(x^{2}-4\right)} \\ &= \lim _{x \rightarrow-2} \frac{2 x^{2}+3 x-2}{x^{2}-4} \\ &=\lim _{x \rightarrow-2} \frac{(2 x-1)(x+2)}{(x-2)(x+2)} \\ &=\lim _{x \rightarrow-2} \frac{2 x-1}{x-2}=\frac{2(-2)-1}{(-2)-2}=\frac{-4-1}{-2-2} \\ &=\frac{-5}{-4}=\frac{5}{4} \end{aligned}$	45) $\begin{aligned} & \lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x^{5}}-x^{3} \\ &=\lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{x^{3}\left(x^{2}-1\right)} \\ &= \lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{x^{3}(x-1)(x+1)} \\ &=\lim _{x \rightarrow-1} \frac{x-3}{x^{3}(x-1)}=\frac{(-1)-3}{(-1)^{3}((-1)-1)} \\ & \quad=\frac{-1-3}{(-1)(-2)}=\frac{-4}{2}=-2 \end{aligned}$
46) $\begin{aligned} & \lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}\left(x^{2}-9\right)}{(2 x+3)(x-3)} \\ & =\lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}(x-3)(x+3)}{(2 x+3)(x-3)} \\ & =\lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}(x+3)}{2 x+3}=\frac{\sqrt{2(3)+1}((3)+3)}{2(3)+3} \\ & =\frac{6 \sqrt{7}}{9}=\frac{2 \sqrt{7}}{3} \end{aligned}$	47) $\begin{aligned} & \lim _{x \rightarrow 1} \frac{\sqrt{3-2 x}-1}{x-1}=\lim _{x \rightarrow 1}\left[\frac{\sqrt{3-2 x}-1}{x-1} \times \frac{\sqrt{3-2 x}+1}{\sqrt{3-2 x}+1}\right] \\ & =\lim _{x \rightarrow 1} \frac{(3-2 x)-1}{(x-1)(\sqrt{3-2 x}+1)} \\ & =\lim _{x \rightarrow 1} \frac{2-2 x}{(x-1)(\sqrt{3-2 x}+1)} \\ & =\lim _{x \rightarrow 1} \frac{2(1-x)}{(x-1)(\sqrt{3-2 x}+1)}= \\ & \quad=\lim _{x \rightarrow 1} \frac{-2(x-1)}{(x-1)(\sqrt{3-2 x}+1)}= \\ & =\lim _{x \rightarrow 1} \frac{-2}{\sqrt{3-2 x}+1}=\frac{-2}{\sqrt{3-2(1)}+1} \\ & =\frac{-2}{\sqrt{3-2}+1}=\frac{-2}{2}=-1 \end{aligned}$
$\text { 48) } \begin{aligned} & \lim _{x \rightarrow 0} \frac{(x+1)^{2}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(x^{2}+2 x+1\right)-1}{x} \\ &=\lim _{x \rightarrow 0} \frac{x^{2}+2 x}{x}=\lim _{x \rightarrow 0} \frac{x(x+2)}{x} \\ &=\lim _{x \rightarrow 0}(x+2)=(0)+2=2 \end{aligned}$	$\text { 49) } \begin{aligned} & \lim _{x \rightarrow 1} \frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1} \\ & =\lim _{x \rightarrow 1}\left[\frac{\sqrt{2 x+2}-2}{\sqrt{3 x-2}-1} \times \frac{\sqrt{2 x+2}+2}{\sqrt{2 x+2}+2} \times \frac{\sqrt{3 x-2}+1}{\sqrt{3 x-2}+1}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(2 x+2)-4}{(3 x-2)-1} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2 x-2}{3 x-3} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2(x-1)}{3(x-1)} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{2}{3} \times \frac{\sqrt{3 x-2}+1}{\sqrt{2 x+2}+2}\right]=\frac{2}{3} \times \frac{\sqrt{3(1)-2}+1}{\sqrt{2(1)+2}+2} \\ = & \frac{2}{3} \times \frac{\sqrt{1}+1}{\sqrt{4}+2}=\frac{2}{3} \times \frac{2}{4}=\frac{1}{3} \end{aligned}$

$$
\text { 50) } \begin{aligned}
& \lim _{x \rightarrow 2} \frac{3-\sqrt{2 x+5}}{x-2} \\
&=\lim _{x \rightarrow 2}\left[\frac{3-\sqrt{2 x+5}}{x-2} \times \frac{3+\sqrt{2 x+5}}{3+\sqrt{2 x+5}}\right] \\
&=\lim _{x \rightarrow 2} \frac{9-(2 x+5)}{(x-2)(3+\sqrt{2 x+5})} \\
&=\lim _{x \rightarrow 2} \frac{4-2 x}{(x-2)(3+\sqrt{2 x+5)}} \\
&=\lim _{x \rightarrow 2} \frac{2(2-x)}{(x-2)(3+\sqrt{2 x+5)}} \\
&=\lim _{x \rightarrow 2} \frac{-2(x-2)}{(x-2)(3+\sqrt{2 x+5)}} \\
&=\lim _{x \rightarrow 2} \frac{-2}{3+\sqrt{2 x+5}}=\frac{-2}{3+\sqrt{2(2)+5}} \\
&=\frac{-2}{3+\sqrt{9}}=\frac{-2}{6}=-\frac{1}{3} \\
&\text { 53) } \left.\begin{array}{rl}
\lim _{x \rightarrow 0} \frac{\sqrt{x+4}}{}-2 \\
x & =\lim _{x \rightarrow 0} \frac{(x+4)-4}{x+4}-2 \\
x(\sqrt{x+4}+2) \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}
\end{array}\right] \\
&=\lim _{x \rightarrow 0} \frac{1}{x(\sqrt{x+4}+2)} \\
&=\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

56) If

$$
\begin{gathered}
\lim _{x \rightarrow 1} f(x)=3 \\
\lim _{x \rightarrow 1} g(x)=-4
\end{gathered}
$$

and

$$
\lim _{x \rightarrow 1} h(x)=-1
$$

then
$\lim _{x \rightarrow 1}\left[\frac{5 f(x)}{2 g(x)}+h(x)\right]=\frac{\lim _{x \rightarrow 1} 5 f(x)}{\lim _{x \rightarrow 1} 2 g(x)}+\lim _{x \rightarrow 1} h(x)$

$$
\begin{aligned}
& \frac{5 \lim _{x \rightarrow 1} f(x)}{2 \lim _{x \rightarrow 1} g(x)}+\lim _{x \rightarrow 1} h(x) \\
= & \frac{5(3)}{2(-4)}+(-1)=\frac{15}{-8}-1=-\frac{15}{8}-1 \\
= & \frac{-15-8}{8}=-\frac{23}{8}
\end{aligned}
$$

51) $\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x^{2}+1}=\frac{(-1)^{2}+3(-1)+2}{(-1)^{2}+1}=\frac{1-3+2}{1+1}$

$$
=\frac{0}{2}=0
$$

52) If

$$
\lim _{x \rightarrow k} f(x)=-\frac{1}{2}
$$

and

$$
\lim _{x \rightarrow k} g(x)=\frac{2}{3}
$$

Then

$$
\lim _{x \rightarrow k} \frac{f(x)}{g(x)}=\frac{-\frac{1}{2}}{\frac{2}{3}}=-\frac{1}{2} \times \frac{3}{2}=-\frac{3}{4}
$$

54) $\begin{gathered}\lim _{x \rightarrow-1} \frac{x^{2}-5 x-6}{x+1}=\lim _{x \rightarrow-1} \frac{(x-6)(x+1)}{x+1}=\lim _{x \rightarrow-1}(x-6) \\ =(-1)-6=-7\end{gathered}$
55) $\lim _{x \rightarrow 0} \frac{(x+3)^{-1}-3^{-1}}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{x+3}-\frac{1}{3}}{x}=\lim _{x \rightarrow 0} \frac{\frac{3-(x+3)}{3(x+3)}}{x}$
$=\lim _{x \rightarrow 0} \frac{-x}{3 x(x+3)}=\lim _{x \rightarrow 0} \frac{-1}{3(x+3)}$ $=\frac{-1}{3((0)+3)}=\frac{-1}{9}=-\frac{1}{9}$
56) If

$$
\lim _{x \rightarrow 1} g(x)=-4
$$

and

$$
\lim _{x \rightarrow 1} h(x)=-1
$$

then

$$
\begin{aligned}
\lim _{x \rightarrow 1} \sqrt{g(x) h(x)} & =\sqrt{\left[\lim _{x \rightarrow 1} g(x)\right]\left[\lim _{x \rightarrow 1} h(x)\right]}=\sqrt{(-4)(-1)} \\
& =\sqrt{4}=2
\end{aligned}
$$

58) If

$$
\begin{gathered}
\lim _{x \rightarrow 1} f(x)=3 \\
\lim _{x \rightarrow 1} g(x)=-4 \\
\lim _{x \rightarrow 1} h(x)=-1
\end{gathered}
$$

and
then
$\lim _{x \rightarrow 1}[2 f(x) g(x) h(x)]=2\left[\lim _{x \rightarrow 1} f(x)\right]\left[\lim _{x \rightarrow 1} g(x)\right]\left[\lim _{x \rightarrow 1} h(x)\right]$ $=2(3)(-4)(-1)=24$

