Workshop Solutions to Sections 5.1 and 5.2

1) The absolute maximum value of $f(x)=x^{3}-2 x^{2}$ in $[-1,2]$ is at $x=$

Solution:

Since $f(x)$ is a continuous on $[-1,2]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=x^{3}-2 x^{2} \\
f^{\prime}(x)=3 x^{2}-4 x
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-4 x=0 \underset{ }{\Rightarrow} x(3 x-4)=0 \\ & \Rightarrow x=0 \text { or } x=\frac{4}{3}\end{aligned}$
Thus,
$f(-1)=(-1)^{3}-2(-1)^{2}=-1-2=-3$
$f(2)=(2)^{3}-2(2)^{2}=8-8=0$
$f(0)=(0)^{3}-2(0)^{2}=0-0=0$
$f\left(\frac{4}{3}\right)=\left(\frac{4}{3}\right)^{3}-2\left(\frac{4}{3}\right)^{2}=\frac{64}{27}-\frac{32}{9}=-\frac{32}{27}$
Hence, we see that the absolute maximum value is 0 at

$$
x=0 \text { and } x=2
$$

3) The absolute maximum point of $f(x)=3 x^{2}-12 x+1$ in $[0,3]$ is

Solution:

Since $f(x)$ is a continuous on $[0,3]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=3 x^{2}-12 x+1 \\
f^{\prime}(x)=6 x-12
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$f^{\prime}(x)=0 \quad \Rightarrow \quad 6 x-12=0 \quad \Rightarrow \quad 6 x=12$

$$
\Rightarrow \quad x=2
$$

Thus,
$f(0)=3(0)^{2}-12(0)+1=0-0+1=1$
$f(3)=3(3)^{2}-12(3)+1=27-36+1=-8$
$f(2)=3(2)^{2}-12(2)+1=12-24+1=-11$
Hence, we see that the absolute maximum point is $(0,1)$.
5) The absolute minimum point of $f(x)=3 x^{2}-12 x+2$ in $[0,3]$ is
Solution:
Since $f(x)$ is a continuous on $[0,3]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=3 x^{2}-12 x+2 \\
f^{\prime}(x)=6 x-12
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow 6 x-12=0 \quad \Rightarrow \quad 6 x=12 \\ & \Rightarrow x=2\end{aligned}$
Thus,
$f(0)=3(0)^{2}-12(0)+2=0-0+2=2$
$f(3)=3(3)^{2}-12(3)+2=27-36+2=-7$
$f(2)=3(2)^{2}-12(2)+2=12-24+2=-10$
Hence, we see that the absolute minimum point is $(2,-10)$.
2) The absolute minimum value of $f(x)=x^{3}-3 x^{2}+1$ in $\left[-\frac{1}{2}, 4\right]$ is

Solution:

Since $f(x)$ is a continuous on $\left[-\frac{1}{2}, 4\right]$, we can use the
Closed Interval Method,

$$
\begin{gathered}
f(x)=x^{3}-3 x^{2}+1 \\
f^{\prime}(x)=3 x^{2}-6 x
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-6 x=0 \quad \Longrightarrow \quad 3 x(x-2)=0$

$$
\Rightarrow \quad x=0 \text { or } x=2
$$

Thus,
$f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)^{2}+1=-\frac{1}{8}-\frac{3}{4}+1=\frac{1}{8}$
$f(4)=(4)^{3}-3(4)^{2}+1=64-48+1=17$
$f(0)=(0)^{3}-3(0)^{2}+1=0-0+1=1$
$f(2)=(2)^{3}-3(2)^{2}+1=8-12+1=-3$
Hence, we see that the absolute minimum value is -3 at $x=2$
4) The absolute minimum point of $f(x)=3 x^{2}-12 x+1$ in $[0,3]$ is

Solution:

Since $f(x)$ is a continuous on $[0,3]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=3 x^{2}-12 x+1 \\
f^{\prime}(x)=6 x-12
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$f^{\prime}(x)=0 \quad \Rightarrow \quad 6 x-12=0 \quad \Rightarrow \quad 6 x=12$

$$
\Rightarrow \quad x=2
$$

Thus,
$f(0)=3(0)^{2}-12(0)+1=0-0+1=1$
$f(3)=3(3)^{2}-12(3)+1=27-36+1=-8$
$f(2)=3(2)^{2}-12(2)+1=12-24+1=-11$
Hence, we see that the absolute minimum point is $(2,-11)$.
6) The values in $(-3,3)$ which make $f(x)=x^{3}-9 x$ satisfy Rolle's Theorem on $[-3,3]$ are

Solution:

$\because f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[-3,3]$.
2- $f(x)$ is differentiable on $(-3,3)$,

$$
f^{\prime}(x)=3 x^{2}-9
$$

3- $f(-3)=(-3)^{3}-9(-3)=-27+27=0=f(3)$
Then there is a number $c \in(-3,3)$ such that
$f^{\prime}(c)=0 \Rightarrow 3 c^{2}-9=0 \quad \Rightarrow \quad 3 c^{2}=9$

$$
\Rightarrow c^{2}=3 \Rightarrow c= \pm \sqrt{3}
$$

Hence, the values are $\pm \sqrt{3} \in(-3,3)$.
7) The values in $(0,2)$ which make
$f(x)=x^{3}-3 x^{2}+2 x+5$ satisfy Rolle's Theorem on $[0,2]$ are

Solution:

$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,2]$.
2- $f(x)$ is differentiable on $(0,2)$,
$f^{\prime}(x)=3 x^{2}-6 x+2$
3- $f(0)=(0)^{3}-3(0)^{2}+2(0)+5=5=f(2)$
Then there is a number $c \in(0,2)$ such that

$$
\begin{aligned}
& f^{\prime}(c)=0 \Rightarrow 3 c^{2}-6 c+2=0 \\
& \Rightarrow \quad c=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(2)}}{2(3)}=\frac{6 \pm \sqrt{36-24}}{6} \\
&=\frac{6 \pm \sqrt{12}}{6}=\frac{6 \pm \sqrt{3 \times 4}}{6}=\frac{6 \pm 2 \sqrt{3}}{6} \\
&=\frac{2(3 \pm \sqrt{3})}{6}=\frac{3 \pm \sqrt{3}}{3}=\frac{3}{3} \pm \frac{\sqrt{3}}{3} \\
&=1 \pm \frac{\sqrt{3}}{3}
\end{aligned}
$$

Hence, the values are $1 \pm \frac{\sqrt{3}}{3} \in(0,2)$.
9) The value c in $(0,2)$ makes $f(x)=x^{3}-x$ satisfied the Mean Value Theorem on [0,2] are

Solution:

$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,2]$.
2- $f(x)$ is differentiable on $(0,2)$,

$$
f^{\prime}(x)=3 x^{2}-1
$$

Then there is a number $c \in(0,3)$ such that

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(2)-f(0)}{2-0} \\
& \Rightarrow 3 c^{2}-1=\frac{\left[(2)^{3}-(2)\right]-\left[(0)^{3}-(0)\right]}{2} \\
& \Rightarrow 3 c^{2}-1=\frac{(6)-(0)}{2} \\
& \Rightarrow 3 c^{2}-1=\frac{6}{2} \\
& \Rightarrow 3 c^{2}-1=3 \\
& \Rightarrow 3 c^{2}=3+1 \\
& \Rightarrow c^{2}=\frac{4}{3} \\
& \Rightarrow c= \pm \sqrt{\frac{4}{3}} \\
& \Rightarrow c= \pm \frac{2}{\sqrt{3}}
\end{aligned}
$$

Hence, the value c is $\frac{2}{\sqrt{3}} \in(0,2)$ but $-\frac{2}{\sqrt{3}} \notin(0,2)$.
11) The critical numbers of the function

$$
f(x)=x^{3}+3 x^{2}-9 x+1 \text { are }
$$

$$
\begin{aligned}
& \text { Solution: } \\
& \\
& \qquad \begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}+6 x-9=0 \\
& \Rightarrow 3\left(x^{2}+2 x-3\right)=0 \\
& \Rightarrow x^{2}+2 x-3=0
\end{aligned}
\end{aligned}
$$

8) The value c in $(0,5)$ which makes $f(x)=x^{2}-x-6$
satisfy the Mean Value Theorem on $[0,5]$ is

Solution:

$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,5]$.
2- $f(x)$ is differentiable on $(0,5)$,

$$
f^{\prime}(x)=2 x-1
$$

Then there is a number $c \in(0,5)$ such that

$$
\begin{aligned}
f^{\prime}(c)= & \frac{f(5)-f(0)}{5-0} \\
& \Rightarrow 2 c-1=\frac{\left[(5)^{2}-(5)-6\right]-\left[(0)^{2}-(0)-6\right]}{5} \\
& \Rightarrow 2 c-1=\frac{(14)-(-6)}{5} \\
& \Rightarrow 2 c-1=\frac{14+6}{5} \\
& \Rightarrow 2 c-1=4 \\
& \Rightarrow 2 c=4+1 \\
& \Rightarrow c=\frac{5}{2}
\end{aligned}
$$

Hence, the value c is $\frac{5}{2} \in(0,5)$.
10) The value in $(0,1)$ which makes $f(x)=3 x^{2}+2 x+5$ satisfy the Mean Value Theorem on $[0,1]$ is

Solution:

$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,1]$.
2- $f(x)$ is differentiable on $(0,1)$,

$$
f^{\prime}(x)=6 x+2
$$

Then there is a number $c \in(0,1)$ such that

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(1)-f(0)}{1-0} \\
& \Rightarrow c+2=\frac{\left[3(1)^{2}+2(1)+5\right]-\left[3(0)^{2}+2(0)+5\right]}{1} \\
& \Rightarrow 6 c+2=(3+2+5)-(0+0+5) \\
& \Rightarrow 6 c+2=10-5 \\
& \Rightarrow 6 c+2=5 \\
& \Rightarrow 6 c=5-2 \\
& \Rightarrow c=\frac{3}{6} \\
& \Rightarrow c=\frac{1}{2}
\end{aligned}
$$

Hence, the values are $\frac{1}{2} \in(0,1)$.

$$
\begin{aligned}
& \Rightarrow \quad(x+3)(x-1)=0 \\
& \Rightarrow \quad x=-3 \quad \text { or } x=1
\end{aligned}
$$

12) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ is decreasing on

Solution:

Hence, the function $f(x)$ is decreasing on $(-3,1)$
14) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ has a relative maximum value at the point
Solution:

$$
f^{\prime}(x)=3 x^{2}+6 x-9
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}+6 x-9=0$
$\Rightarrow 3\left(x^{2}+2 x-3\right)=0$
$\Rightarrow \quad x^{2}+2 x-3=0$
$\Rightarrow \quad(x+3)(x-1)=0$
$\Rightarrow \quad x=-3$ or $x=1$

+	-	+	Sign of $f^{\prime}(x)$
+			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum value at the point $(-3,28)$.
$f(-3)=(-3)^{3}+3(-3)^{2}-9(-3)+1$
$=-27+27+27+1=28$
16) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ concave upward on

Solution:

$f^{\prime \prime}(x)=0 \quad \Longrightarrow$	$\begin{array}{ll} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & f^{\prime \prime}(x)=6 x+6 \\ \Rightarrow & 6 x+6=0 \\ \Rightarrow & 6 x=-6 \\ \Rightarrow & x=-\frac{6}{6} \\ \Rightarrow & x=-1 \\ & -1 \\ \hline \end{array}$	
-	+	Sign of $f^{\prime \prime}(x)$
〇	U	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(-1, \infty)$
13) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ is increasing on
Solution:

$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow \\ & \end{aligned}$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & 3 x^{2}+6 x-9=0 \\ & 3\left(x^{2}+2 x-3\right)=0 \\ & x^{2}+2 x-3=0 \\ & (x+3)(x-1)=0 \\ & x=-3 \text { or } x=1 \\ & 1 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
∇			Kind of monotonicity

Hence, the function $f(x)$ is increasing on $(-\infty,-3) \cup(1, \infty)$
15) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ has a relative minimum value at the point
Solution:

Hence, the function $f(x)$ has a relative minimum value at the point $(1,-4)$.
$f(1)=(1)^{3}+3(1)^{2}-9(1)+1$ $=1+3-9+1=-4$
17) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ concave downward on

Solution:

$$
\begin{aligned}
& \quad \begin{array}{l}
\\
\\
f^{\prime}(x)=3 x^{2}+6 x-9 \\
f^{\prime \prime}(x)=6 x+6
\end{array} \\
& f^{\prime \prime}(x)=0 \quad 6 x+6=0 \\
& \Rightarrow \quad 6 x=-6 \\
& \Rightarrow \\
& \Rightarrow \quad x=-\frac{6}{6} \\
& \Rightarrow \quad x=-1
\end{aligned}
$$

Hence, the function $f(x)$ is concave downward on $(-\infty,-1)$
18) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ has an inflection point at

Solution:

$$
f^{\prime}(x)=3 x^{2}+6 x-9
$$

$f^{\prime \prime}(x)=6 x+6$
$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x+6=0$

$$
\Rightarrow \quad 6 x=-6
$$

$$
\Rightarrow \quad x=-\frac{6}{6}
$$

$$
\Rightarrow \quad x=-1
$$

-1

-1	+	Sign of $f^{\prime \prime}(x)$
\cap	\bigcup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(-1,12)$.

$$
f(-1)=(-1)^{3}+3(-1)^{2}-9(-1)+1
$$

$$
=-1+3+9+1=12
$$

20) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ is decreasing on
Solution:
21) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ is increasing

		$f^{\prime}(x)=3 x^{2}-6 x-9$
$f^{\prime}(x)=0$	\Rightarrow	$3 x^{2}-6 x-9=0$
\Rightarrow	$3\left(x^{2}-2 x-3\right)=0$	
	\Rightarrow	$x^{2}-2 x-3=0$
	\Rightarrow	$(x+1)(x-3)=0$
	\Rightarrow	$x=-1$ or $x=3$

Hence, the function $f(x)$ is decreasing on $(-1,3)$
22) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ has a relative maximum value at the point

Solution:

$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow \\ & = \end{aligned}$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}-6 x-9 \\ & 3 x^{2}-6 x-9=0 \\ & 3\left(x^{2}-2 x-3\right)=0 \\ & x^{2}-2 x-3=0 \\ & (x+1)(x-3)=0 \\ & x=-1 \text { or } x=3 \\ & 3 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum value at the point $(-1,6)$.
$f(-1)=(-1)^{3}-3(-1)^{2}-9(-1)+1$ $=-1-3+9+1=6$.
19) The critical numbers of the function

$$
f(x)=x^{3}-3 x^{2}-9 x+1 \text { are }
$$

Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & f^{\prime}(x)=3 x^{2}-6 x-9 \\
& \Rightarrow 3 x^{2}-6 x-9=0 \\
& \Rightarrow 3\left(x^{2}-2 x-3\right)=0 \\
& \Rightarrow x^{2}-2 x-3=0 \\
& \Rightarrow x+1)(x-3)=0 \\
& x=-1 \quad \text { or } x=3
\end{aligned}
$$

on
on
Solution:

		$f^{\prime}(x)=3 x^{2}-6 x-9$	
$f^{\prime}(x)=0$	\Longrightarrow	$3 x^{2}-6 x-9=0$	
	\Longrightarrow	$3\left(x^{2}-2 x-3\right)=0$	
	\Longrightarrow	$x^{2}-2 x-3=0$	
	\Rightarrow	$(x+1)(x-3)=0$	
+	-1	-	+

Hence, the function $f(x)$ is increasing on
$(-\infty,-1) \cup(3, \infty)$
23) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ has a relative minimum value at the point

Solution:

$\left.\begin{array}{rll} & & f^{\prime}(x)=3 x^{2}-6 x-9 \\ f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-6 x-9=0 \\ \Rightarrow & 3\left(x^{2}-2 x-3\right)=0 \\ \Rightarrow & x^{2}-2 x-3=0 \\ \Rightarrow & (x+1)(x-3)=0 \\ & \Rightarrow & x=-1 \text { or } x=3\end{array}\right]$

Hence, the function $f(x)$ has a relative minimum value at the point $(3,-26)$.
$f(3)=(3)^{3}-3(3)^{2}-9(3)+1$

$$
=27-27-27+1=-26 .
$$

24) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ concave upward on

Solution:

for $\quad f^{\prime}(x)=3 x^{2}-6 x-9$
$f^{\prime \prime}(x)=6 x-6$
$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x-6=0$
$\Rightarrow \quad 6 x=6$
$\Rightarrow \quad x=\frac{6}{6}$
$\Rightarrow \quad x=1$
1

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(1, \infty)$
26) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ has an inflection point at
Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-6 \\
\Rightarrow & 6 x-6=0 \\
\Rightarrow & x=\frac{6}{6} \\
\Rightarrow & x=1
\end{aligned}
$$

1

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\bigcup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(1,-10)$.

$$
\begin{aligned}
f(1) & =(1)^{3}-3(1)^{2}-9(1)+1 \\
& =1-3-9+1=-10
\end{aligned}
$$

28) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ is decreasing on
Solution:

$f^{\prime}(x)=0$	
	$f^{\prime}(x)=3 x^{2}+6 x-9$
	$\Rightarrow 3 x^{2}+6 x-9=0$
\Rightarrow	$3\left(x^{2}+2 x-3\right)=0$
	$\Rightarrow \quad(x+3)(x-1)=0$
	$\Rightarrow \quad x=-3$ or $x=1$

Hence, the function $f(x)$ is decreasing on $(-3,1)$.
25) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ concave downward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-6 \\
\Rightarrow & 6 x-6=0 \\
\Rightarrow & 6 x=6 \\
\Rightarrow & x=\frac{6}{6} \\
\Rightarrow & x=1
\end{aligned}
$$

1

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\bigcup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$
27) The critical numbers of the function
$f(x)=x^{3}+3 x^{2}-9 x+5$ are
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}+6 x-9=0 \\
& \Rightarrow 3\left(x^{2}+2 x-3\right)=0 \\
& \Rightarrow x^{2}+2 x-3=0 \\
& \Rightarrow(x+3)(x-1)=0 \\
& \Rightarrow x=-3 \text { or } x=1
\end{aligned}
$$

29) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ is increasing on
Solution:

$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow \\ & -3 \end{aligned}$	$\begin{aligned} & c^{\prime}(x)=3 x^{2}+6 x-9 \\ & 3 x^{2}+6 x-9=0 \\ & \left(x^{2}+2 x-3\right)=0 \\ & 2^{2}+2 x-3=0 \\ & x+3)(x-1)=0 \\ & x=-3 \text { or } x=1 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
π			Kind of monotonicity

Hence, the function $f(x)$ is increasing on $(-\infty,-3) \cup(1, \infty)$.
30) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ has a relative minimum value at the point

Solution:

		$f^{\prime}(x)=3 x^{2}+6 x-9$
$f^{\prime}(x)=0$	$\Rightarrow 3 x^{2}+6 x-9=0$	
\Rightarrow	$3\left(x^{2}+2 x-3\right)=0$	
\Rightarrow	$x^{2}+2 x-3=0$	
\Rightarrow	$(x+3)(x-1)=0$	
	\Rightarrow	$x=-3$ or $x=1$

Hence, the function $f(x)$ has a relative minimum value at the point $(1,0)$.
$f(1)=(1)^{3}+3(1)^{2}-9(1)+5$

$$
=1+3-9+5=0
$$

32) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ has an inflection point at
Solution:

$$
\left.\begin{array}{rl}
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
f^{\prime \prime}(x)=6 x+6 \\
f^{\prime \prime}(x)=0 & 6 x+6=0 \\
\Rightarrow & 6 x=-6 \\
\Rightarrow & x=-\frac{6}{6} \\
\Rightarrow & x=-1 \\
- & -1
\end{array} \right\rvert\,
$$

Hence, the function $f(x)$ has an inflection point at $(-1,16)$.

$$
\begin{aligned}
f(-1) & =(-1)^{3}+3(-1)^{2}-9(-1)+5 \\
& =-1+3+9+5=16
\end{aligned}
$$

34) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ concave upward on

Solution:

$\begin{aligned} f^{\prime \prime}(x)=0 & = \\ & = \\ & = \\ & =\end{aligned}$	$\begin{array}{ll} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & f^{\prime \prime}(x)=6 x+6 \\ \Rightarrow & 6 x+6=0 \\ \Rightarrow & 6 x=-6 \\ \Rightarrow & x=-\frac{6}{6} \\ \Rightarrow & x=-1 \\ & -1 \end{array}$	
-	+	Sign of $f^{\prime \prime}(x)$
ก	U	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(-1, \infty)$.
31) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ has a relative maximum value at the point

Solution:

		$f^{\prime}(x)=3 x^{2}+6 x-9$
$f^{\prime}(x)=0$	$\Rightarrow 3 x^{2}+6 x-9=0$	
\Rightarrow	$3\left(x^{2}+2 x-3\right)=0$	
\Rightarrow	$x^{2}+2 x-3=0$	
\Rightarrow	$(x+3)(x-1)=0$	
\Rightarrow	$x=-3$ or $x=1$	

Hence, the function $f(x)$ has a relative maximum value at the point $(-3,32)$.
$f(-3)=(-3)^{3}+3(-3)^{2}-9(-3)+5$

$$
=-27+27+27+5=32
$$

33) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ concave downward on
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
& f^{\prime \prime}(x)=6 x+6 \\
& f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x+6=0 \\
& \Rightarrow \quad 6 x=-6 \\
& \Rightarrow x=-\frac{6}{6} \\
& \Rightarrow \quad x=-1 \\
& -1
\end{aligned}
$$

Hence, the function $f(x)$ is concave downward on $(-\infty,-1)$.
35) The critical numbers of the function

$$
f(x)=x^{3}-3 x^{2}-9 x+5 \text { are }
$$

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-6 x-9=0 \\
& \Rightarrow 3\left(x^{2}-2 x-3\right)=0 \\
& \Rightarrow x^{2}-2 x-3=0 \\
& \Rightarrow(x+1)(x-3)=0 \\
& \Rightarrow x=-1 \quad \text { or } x=3
\end{aligned}
$$

36) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ is increasing on

Solution:

$\quad f^{\prime}(x)=3 x^{2}-6 x-9$
$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-6 x-9=0$
$\Rightarrow 3\left(x^{2}-2 x-3\right)=0$
$\Rightarrow \quad x^{2}-2 x-3=0$
$\Rightarrow \quad(x+1)(x-3)=0$
$\Rightarrow \quad x=-1$ or $x=3$
$-1 \quad 3$

+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ is increasing on $(-\infty,-1) \cup(3, \infty)$.
38) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ has a relative maximum value at the point
Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}-6 x-9 \\ & 3 x^{2}-6 x-9=0 \\ & 3\left(x^{2}-2 x-3\right)=0 \\ & x^{2}-2 x-3=0 \\ & (x+1)(x-3)=0 \\ & x=-1 \text { or } x=3 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
	X		Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum value at the point $(-1,10)$.
$f(-1)=(-1)^{3}-3(-1)^{2}-9(-1)+5$

$$
=-1-3+9+5=10
$$

40) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ concave upward on
Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-6 \\
\Rightarrow & 6 x-6=0 \\
\Rightarrow & 6 x=6 \\
\Rightarrow & x=\frac{6}{6} \\
\Rightarrow & x=1
\end{aligned}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\bigcup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(1, \infty)$.
37) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ is decreasing on
Solution:

$f^{\prime}(x)=0$		$f^{\prime}(x)=3 x^{2}-6 x-9$
\Rightarrow	$3 x^{2}-6 x-9=0$	
\Rightarrow	$3\left(x^{2}-2 x-3\right)=0$	
\Rightarrow	$x^{2}-2 x-3=0$	
\Rightarrow	$(x+1)(x-3)=0$	
	\Rightarrow	$x=-1$ or $x=3$

Hence, the function $f(x)$ is decreasing on $(-1,3)$.
39) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ has a relative minimum value at the point
Solution:

Hence, the function $f(x)$ has a relative minimum value at the point $(3,-22)$.
$f(3)=(3)^{3}-3(3)^{2}-9(3)+5$ $=27-27-27+5=-22$.
41) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ concave downward on
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-6 \\
\Rightarrow & 6 x-6=0 \\
\Rightarrow & 6 x=6 \\
\Rightarrow & x=\frac{6}{6} \\
\Rightarrow & x=1
\end{aligned}
$$

1

1		+
-	\bigcup	Kign of $f^{\prime \prime}(x)$ concavity
〇	\bigcup	

Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$.
42) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ has an inflection point at

Solution:

$$
f^{\prime}(x)=3 x^{2}-6 x-9
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x-6=0$

$$
f^{\prime \prime}(x)=6 x-6
$$

$$
\Rightarrow \quad 6 x=6
$$

$$
\Rightarrow \quad x=\frac{6}{6}
$$

$$
\Rightarrow \quad x=1
$$

1

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\bigcup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(1,-6)$.

$$
\begin{aligned}
f(1) & =(1)^{3}-3(1)^{2}-9(1)+5 \\
& =1-3-9+5=-6
\end{aligned}
$$

44) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ is increasing on

Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2$
$f^{\prime}(x)=0$	$\Rightarrow x^{2}-x-2=0$
	$\Rightarrow \quad(x+1)(x-2)=0$
	$\Rightarrow \quad x=-1$ or $x=2$

Hence, the function $f(x)$ is increasing on $(-\infty,-1) \cup(2, \infty)$.
46) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$
has a relative maximum point
Solution:
$f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2$
$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}-x-2=0$

$$
\Rightarrow \quad(x+1)(x-2)=0
$$

$$
\Rightarrow \quad x=-1 \quad \text { or } x=2
$$

$-1 \quad 2$

+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum point at $\left(-1, \frac{13}{6}\right)$.
$\begin{aligned} f(-1) & =\frac{1}{3}(-1)^{3}-\frac{1}{2}(-1)^{2}-2(-1)+1 \\ & =-\frac{1}{3}-\frac{1}{2}+2+1=\frac{13}{6}\end{aligned}$
43) The critical numbers of the function
$f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ are
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2 \\
f^{\prime}(x)=0 & \Rightarrow x^{2}-x-2=0 \\
& \Rightarrow \quad(x+1)(x-2)=0 \\
& \Rightarrow \quad x=-1 \quad \text { or } \quad x=2
\end{aligned}
$$

45) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ is decreasing on

Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2$
$f^{\prime}(x)=0$	$\Rightarrow x^{2}-x-2=0$
	$\Rightarrow \quad(x+1)(x-2)=0$
	$\Rightarrow \quad x=-1 \quad$ or $x=2$

Hence, the function $f(x)$ is decreasing on ($-1,2$).
47) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ has a relative minimum point Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2$
$f^{\prime}(x)=0$	$\Rightarrow x^{2}-x-2=0$
	$\Rightarrow(x+1)(x-2)=0$
	$\Rightarrow \quad x=-1 \quad$ or $x=2$

Hence, the function $f(x)$ has a relative minimum point at $\left(2,-\frac{7}{3}\right)$.

$$
\begin{aligned}
f(2) & =\frac{1}{3}(2)^{3}-\frac{1}{2}(2)^{2}-2(2)+1 \\
& =\frac{8}{3}-\frac{4}{2}-4+1=-\frac{7}{3}
\end{aligned}
$$

48) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ concave upward on
Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2
$$

$$
f^{\prime \prime}(x)=2 x-1
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x-1=0$

$$
\Rightarrow \quad 2 x=1
$$

$$
\Rightarrow \quad x=\frac{1}{2}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $\left(\frac{1}{2}, \infty\right)$.
50) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ has an inflection point at
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2 \\
f^{\prime \prime}(x)=0 & \Rightarrow \quad f^{\prime \prime}(x)=2 x-1 \\
& \Rightarrow 2 x=1=0 \\
& \Rightarrow x=\frac{1}{2}
\end{aligned} \quad \begin{array}{|c|c|c|}
\hline- & + & \text { Sign of } f^{\prime \prime}(x) \\
\hline \cap & U & \begin{array}{c}
\text { Kind of } \\
\text { concavity }
\end{array} \\
\hline
\end{array}
$$

Hence, the function $f(x)$ has an inflection point at $\left(\frac{1}{2},-\frac{1}{12}\right)$.
$f\left(\frac{1}{2}\right)=\frac{1}{3}\left(\frac{1}{2}\right)^{3}-\frac{1}{2}\left(\frac{1}{2}\right)^{2}-2\left(\frac{1}{2}\right)+1$
$=\frac{1}{24}-\frac{1}{8}-1+1=-\frac{1}{12}$
52) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ is increasing on
Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}+x-2=0$
$\Rightarrow \quad(x+2)(x-1)=0$
$\Rightarrow \quad x=-2$ or $x=1$
-2

+2	-	+	Sign of $f^{\prime}(x)$	
			Kind of monotonicity	

Hence, the function $f(x)$ is increasing on
$(-\infty,-2) \cup(1, \infty)$.
49) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ concave downward on
Solution:

$$
\begin{gathered}
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2 \\
f^{\prime \prime}(x)=2 x-1
\end{gathered}
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x-1=0$
$\Rightarrow \quad 2 x=1$
$\Rightarrow \quad x=\frac{1}{2}$

$\frac{1}{2}$		
-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $\left(-\infty, \frac{1}{2}\right)$.
51) The critical numbers of the function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ are
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2 \\
f^{\prime}(x)=0 & \Rightarrow x^{2}+x-2=0 \\
& \Rightarrow \quad(x+2)(x-1)=0 \\
& \Rightarrow \quad x=-2 \quad \text { or } x=1
\end{aligned}
$$

53) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ is decreasing on
Solution:
$f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2$
$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}+x-2=0$
$\Rightarrow \quad(x+2)(x-1)=0$
$\Rightarrow \quad x=-2$ or $x=1$
$-2 \quad 1$

+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ is decreasing on $(-2,1)$.
54) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ has a relative maximum point
Solution:
$f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2$
$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}+x-2=0$
$\Rightarrow \quad(x+2)(x-1)=0$
$\Rightarrow \quad x=-2$ or $x=1$
$-2 \quad 1$

+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum point at $\left(-2, \frac{13}{3}\right)$.
$f(-2)=\frac{1}{3}(-2)^{3}+\frac{1}{2}(-2)^{2}-2(-2)+1$

$$
=-\frac{8}{3}+\frac{4}{2}+4+1=\frac{13}{3}
$$

56) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ concave upward on

Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$$
f^{\prime \prime}(x)=2 x+1
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x+1=0$
$\Rightarrow \quad 2 x=-1$
$\Rightarrow \quad x=-\frac{1}{2}$

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	$\begin{array}{c}\text { Kind of } \\ \text { concavity }\end{array}$

Hence, the function $f(x)$ is concave upward on $\left(-\frac{1}{2}, \infty\right)$.
55) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$
has a relative minimum point
Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2$
$f^{\prime}(x)=0$	$\Rightarrow x^{2}+x-2=0$
	$\Rightarrow \quad(x+2)(x-1)=0$
	$\Rightarrow \quad x=-2 \quad$ or $x=1$

Hence, the function $f(x)$ has a relative minimum point at $\left(1,-\frac{1}{6}\right)$.

$$
\begin{aligned}
f(1) & =\frac{1}{3}(1)^{3}+\frac{1}{2}(1)^{2}-2(1)+1 \\
& =\frac{1}{3}+\frac{1}{2}-2+1=-\frac{1}{6}
\end{aligned}
$$

57) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ concave downward on

Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$$
f^{\prime \prime}(x)=2 x+1
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x+1=0$
$\Rightarrow \quad 2 x=-1$
$\Rightarrow \quad x=-\frac{1}{2}$

Hence, the function $f(x)$ is concave downward on $\left(-\infty,-\frac{1}{2}\right)$.
58) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ has an inflection point at
Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$$
f^{\prime \prime}(x)=2 x+1
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x+1=0$

\Rightarrow $-\frac{1}{2}$		
-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $\left(-\frac{1}{2}, \frac{25}{12}\right)$.
$\begin{aligned} f\left(-\frac{1}{2}\right)=\frac{1}{3}\left(-\frac{1}{2}\right)^{3} & +\frac{1}{2}\left(-\frac{1}{2}\right)^{2}-2\left(-\frac{1}{2}\right)+1 \\ & =-\frac{1}{24}+\frac{1}{8}+1+1=\frac{25}{12}\end{aligned}$
60) The function $f(x)=x^{3}-12 x+3$ is increasing on

Solution:

$$
f^{\prime}(x)=3 x^{2}-12
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-12=0$
$\Rightarrow 3\left(x^{2}-4\right)=0$
$\Rightarrow \quad x^{2}-4=0$
$\Rightarrow \quad x^{2}=4$
$\Rightarrow \quad x= \pm 2$

-2		+	Sign of $f^{\prime}(x)$
+		Kind of monotonicity	

Hence, the function $f(x)$ is increasing on $(-\infty,-2) \cup(2, \infty)$.
62) The function $f(x)=x^{3}-12 x+3$ has a relative maximum point at
Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & \quad f^{\prime}(x)=3 x^{2}-12 \\ & 3 x^{2}-12=0 \\ & 3\left(x^{2}-4\right)=0 \\ & x^{2}-4=0 \\ & x^{2}=4 \\ & x= \pm 2 \\ & \quad 2 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum point at $(-2,19)$.
$f(-2)=(-2)^{3}-12(-2)+3$
$=-8+24+3=19$.
59) The critical numbers of the function

$$
f(x)=x^{3}-12 x+3 \text { are }
$$

Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & \Rightarrow 3 f^{\prime}(x)=3 x^{2}-12 \\
& \Rightarrow 3\left(x^{2}-4\right)=0 \\
& \Rightarrow x^{2}-4=0 \\
& \Rightarrow x^{2}=4 \\
& \Rightarrow x= \pm 2
\end{aligned}
$$

61) The function $f(x)=x^{3}-12 x+3$ is decreasing on

Solution:

$f^{\prime}(x)=0$	$\begin{gathered} f^{\prime}(x \\ 3 x^{2}- \\ 3\left(x^{2}-4\right. \\ x^{2}-4 \\ x^{2}=4 \\ x= \pm \end{gathered}$		
+	-	+	Sign of $f^{\prime}(x)$
π			Kind of monotonicity

Hence, the function $f(x)$ is decreasing on $(-2,2)$.
63) The function $f(x)=x^{3}-12 x+3$ has a relative minimum point at
Solution:

Hence, the function $f(x)$ has a relative minimum point at $(2,-13)$.
$f(2)=(2)^{3}-12(2)+3$

$$
=8-24+3=-13
$$

64) The function $f(x)=x^{3}-12 x+3$ concave upward on

Solution:

$$
f^{\prime}(x)=3 x^{2}-12
$$

$$
f^{\prime \prime}(x)=6 x
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x=0$

$$
\Rightarrow \quad x=\frac{0}{6}
$$

$$
\Rightarrow \quad x=0
$$

0		
-	+	Sign of $f^{\prime \prime}(x)$
\cap	\bigcup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(0, \infty)$.
66) The function $f(x)=x^{3}-12 x+3$ has an inflection point at
Solution:

$$
f^{\prime}(x)=3 x^{2}-12
$$

$$
f^{\prime \prime}(x)=6 x
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x=0$

$$
\Rightarrow \quad x=\frac{0}{6}
$$

$$
\Rightarrow \quad x=0
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(0,3)$.
$f(0)=(0)^{3}-12(0)^{2}+3$

$$
=0-0+3=3
$$

68) The function $f(x)=x^{3}-3 x^{2}+1$ is increasing on

Solution:

$f^{\prime}(x)=0$	
	$\Rightarrow \quad 3 x^{2}-6 x=0$
	$\Rightarrow \quad 3\left(x^{2}-2 x\right)=0$
	$\Rightarrow \quad x^{2}-2 x=0$
	$\Rightarrow x(x-2)=0$
	$\Rightarrow \quad x=0 \quad$ or $\quad x=2$

Hence, the function $f(x)$ is increasing on $(-\infty, 0) \cup(2, \infty)$.
65) The function $f(x)=x^{3}-12 x+3$ concave downward on

Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-12 \\
& f^{\prime \prime}(x)=0 \Rightarrow \quad 6 x=0 \\
& \Rightarrow \quad x=\frac{0}{6}(x)=6 x \\
& \Rightarrow \quad x=0
\end{aligned}
$$

0

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\bigcup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 0)$.
67) The critical numbers of the function
$f(x)=x^{3}-3 x^{2}+1$ are
Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & \Rightarrow 3 f^{\prime}(x)=3 x^{2}-6 x \\
& \Rightarrow 3\left(x^{2}-2 x\right)=0 \\
& \Rightarrow x^{2}-2 x=0 \\
& \Rightarrow x(x-2)=0 \\
& \Rightarrow x=0 \quad \text { or } \quad x=2
\end{aligned}
$$

69) The function $f(x)=x^{3}-3 x^{2}+1$ is decreasing on
Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}-6 x \\ & 3 x^{2}-6 x=0 \\ & 3\left(x^{2}-2 x\right)=0 \\ & r^{2}-2 x=0 \\ & x(x-2)=0 \\ & x=0 \quad \text { or } x=2 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
∇			Kind of monotonicity

Hence, the function $f(x)$ is decreasing on $(0,2)$.
70) The function $f(x)=x^{3}-3 x^{2}+1$ has a relative maximum point at

Solution:

fr $\quad f^{\prime}(x)=3 x^{2}-6 x$
$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-6 x=0$
$\Rightarrow 3\left(x^{2}-2 x\right)=0$
$\Rightarrow \quad x^{2}-2 x=0$
$\Rightarrow \quad x(x-2)=0$
$\Rightarrow x=0$ or $x=2$

0		+	+
		Sign of $f^{\prime}(x)$ Kind of monotonicity	

Hence, the function $f(x)$ has a relative maximum point at $(0,1)$.
$f(0)=(0)^{3}-3(0)^{2}+1$
$=0-0+1=1$.
72) The function $f(x)=x^{3}-3 x^{2}+1$ concave upward on
Solution:

	$f^{\prime}(x)=3 x^{2}-6 x$
$f^{\prime \prime}(x)=0$	$\Rightarrow \quad f^{\prime \prime}(x)=6 x-6$
	$\Rightarrow 6 x=6=0$
	$\Rightarrow x=\frac{6}{6}$
	$\Rightarrow x=1$

1

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(1, \infty)$.
74) The function $f(x)=x^{3}-3 x^{2}+1$ has an inflection point at

Solution:

$$
f^{\prime}(x)=3 x^{2}-6 x
$$

$$
f^{\prime \prime}(x)=6 x-6
$$

$$
f^{\prime \prime}(x)=0 \Rightarrow 6 x-6=0
$$

$$
\Rightarrow \quad 6 x=6
$$

$$
\Rightarrow \quad x=\frac{6}{6}
$$

$$
\Rightarrow \quad x=1
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(1,-1)$.
$f(1)=(1)^{3}-3(1)^{2}+1$
$=1-3+1=-1$
71) The function $f(x)=x^{3}-3 x^{2}+1$ has a relative minimum point at

Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{\prime}(x)=3 x^{2}-6 \\
& \Rightarrow 3\left(x^{2}-2 x\right)=0 \\
& \Rightarrow x^{2}-2 x=0 \\
& \Rightarrow x(x-2)=0 \\
& \Rightarrow x=0 \quad \text { or } \quad x=2
\end{aligned}
$$

+	-	+	Sign of $f^{\prime}(x)$	
+		Kind of monotonicity		

Hence, the function $f(x)$ has a relative minimum point at $(2,-3)$.
$f(2)=(2)^{3}-3(2)^{2}+1$

$$
=8-12+1=-3
$$

73) The function $f(x)=x^{3}-3 x^{2}+1$ concave downward on
Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-6 x \\
& f^{\prime \prime}(x)=0 \Rightarrow \quad f^{\prime \prime}(x)=6 x-6=0 \\
& \Rightarrow \quad 6 x=6 \\
& \Rightarrow \quad x=\frac{6}{6} \\
& \Rightarrow \quad x=1
\end{aligned}
$$

$$
1
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$.
75) The critical numbers of the function

$$
f(x)=x^{3}-3 x^{2}+2 \text { are }
$$

Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & f^{\prime}(x)=3 x^{2}-6 x \\
& \Rightarrow 3 x^{2}-6 x=0 \\
& \Rightarrow 3\left(x^{2}-2 x\right)=0 \\
& \Rightarrow x^{2}-2 x=0 \\
& \Rightarrow x(x-2)=0 \\
& x=0 \quad \text { or } \quad x=2
\end{aligned}
$$

76) The function $f(x)=x^{3}-3 x^{2}+2$ is increasing on Solution:
77) The function $f(x)=x^{3}-3 x^{2}+2$ is decreasing on Solution:

$f^{\prime}(x)=0$	$\Rightarrow \quad 3 f^{2}-6 x=0$
	$\Rightarrow 3\left(x^{2}-2 x\right)=0$
	$\Rightarrow x^{2}-2 x=0$
	$\Rightarrow x(x-2)=0$
	$\Rightarrow x=0 \quad$ or $\quad x=2$

Hence, the function $f(x)$ is decreasing on $(0,2)$.
79) The function $f(x)=x^{3}-3 x^{2}+2$ has a relative maximum point at
Solution:

Hence, the function $f(x)$ has a relative maximum point at $(0,2)$.
$f(0)=(0)^{3}-3(0)^{2}+2$

$$
=0-0+2=2 \text {. }
$$

81) The function $f(x)=x^{3}-3 x^{2}+2$ concave upward on

Solution:

$$
\begin{aligned}
& \\
& \quad f^{\prime}(x)=3 x^{2}-6 x \\
& f^{\prime \prime}(x)=0 \Rightarrow \quad f^{\prime \prime}(x)=6 x-6 \\
& \Rightarrow \quad 6 x=6=0 \\
& \Rightarrow \quad x=\frac{6}{6} \\
& \Rightarrow \quad x=1
\end{aligned}
$$

1		+
-	\bigcup	Sign of $f^{\prime \prime}(x)$ concavity
〇		

Hence, the function $f(x)$ is concave upward on $(1, \infty)$.
82) The function $f(x)=x^{3}-3 x^{2}+2$ has an inflection point at

Solution:

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}-6 x \\
f^{\prime \prime}(x)=6 x-6
\end{gathered}
$$

$$
f^{\prime \prime}(x)=0 \Rightarrow 6 x-6=0
$$

$$
\Rightarrow \quad 6 x=6
$$

$$
\Rightarrow \quad x=\frac{6}{6}
$$

$$
\Rightarrow \quad x=1
$$

1

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\bigcup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(1,0)$. $f(1)=(1)^{3}-3(1)^{2}+2$

$$
=1-3+2=0
$$

84) The function $f(x)=x^{3}-6 x^{2}-36 x$ is decreasing on Solution:

$f^{\prime}(x)=0$	$f^{\prime}(x)=3 x^{2}-12 x-36$
	$\Rightarrow 3 x^{2}-12 x-36=0$
\Rightarrow	$3\left(x^{2}-4 x-12\right)=0$
\Rightarrow	$x^{2}-4 x-12=0$
	$\Rightarrow \quad(x+2)(x-6)=0$
	\Rightarrow

Hence, the function $f(x)$ is decreasing on $(-2,6)$.
86) The function $f(x)=x^{3}-6 x^{2}-36 x$ has a relative minimum value at the point

Solution:

Solut $\quad f^{\prime}(x)=3 x^{2}-12 x-36$
$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-12 x-36=0$
$\Rightarrow 3\left(x^{2}-4 x-12\right)=0$
$\Rightarrow x^{2}-4 x-12=0$
$\Rightarrow \quad(x+2)(x-6)=0$
$\Rightarrow \quad x=-2$ or $x=6$

+2	-	+	Sign of $f^{\prime}(x)$	
		Kind of monotonicity		

Hence, the function $f(x)$ has a relative minimum value at the point $(6,-216)$.
$f(6)=(6)^{3}-6(6)^{2}-36(6)$
$=216-216-216=-216$
83) The critical numbers of the function

$$
f(x)=x^{3}-6 x^{2}-36 x \text { are }
$$

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x-36 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-12 x-36=0 \\
& \Rightarrow 3\left(x^{2}-4 x-12\right)=0 \\
& \Rightarrow x^{2}-4 x-12=0 \\
& \Rightarrow(x+2)(x-6)=0 \\
& \Rightarrow x=-2 \quad \text { or } \quad x=6
\end{aligned}
$$

85) The function $f(x)=x^{3}-6 x^{2}-36 x$ is increasing on Solution:

Hence, the function $f(x)$ is increasing on $(-\infty,-2) \cup(6, \infty)$.
87) The function $f(x)=x^{3}-6 x^{2}-36 x$ has a relative maximum value at the point

Solution:

$\left.\begin{array}{rl} \\ f^{\prime}(x)=0 & f^{\prime}(x)=3 x^{2}-12 x-36 \\ \Rightarrow & 3 x^{2}-12 x-36=0 \\ \Rightarrow & 3\left(x^{2}-4 x-12\right)=0 \\ \Rightarrow & x^{2}-4 x-12=0 \\ & \Rightarrow \\ & (x+2)(x-6)=0 \\ \hline & x=-2 \text { or } x=6\end{array}\right]$

Hence, the function $f(x)$ has a relative maximum value at the point $(-2,40)$.
$f(-2)=(-2)^{3}-6(-2)^{2}-36(-2)$ $=-8-24+72=40$
88) The function $f(x)=x^{3}-6 x^{2}-36 x$ has an inflection point at

Solution:

$$
f^{\prime}(x)=3 x^{2}-12 x-36
$$

$f^{\prime \prime}(x)=6 x-12$
$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x-12=0$

$$
\Rightarrow \quad 6 x=12
$$

$$
\Rightarrow \quad x=\frac{12}{6}
$$

$$
\Rightarrow \quad x=2^{0}
$$

2

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(2,-88)$.
$f(2)=(2)^{3}-6(2)^{2}-36(2)$
$=8-24-72=-88$
90) The function $f(x)=x^{3}-6 x^{2}-36 x$ concave upward on
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x-36 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-12 \\
\Rightarrow & 6 x-12=0 \\
\Rightarrow & 6 x=12 \\
\Rightarrow & x=2
\end{aligned}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(2, \infty)$.
92) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ is decreasing on

Solution:

Hence, the function $f(x)$ is decreasing on $(-\infty,-3) \cup(-1, \infty)$.
89) The function $f(x)=x^{3}-6 x^{2}-36 x$ concave downward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x-36 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-12 \\
\Rightarrow & 6 x-12=0 \\
\Rightarrow & 6 x=12 \\
\Rightarrow & x=\frac{12}{6} \\
\Rightarrow & x=2
\end{aligned}
$$

$$
2
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 2)$.
91) The critical numbers of the function
$f(x)=-x^{3}-6 x^{2}-9 x+1$ are
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=-3 x^{2}-12 x-9 \\
f^{\prime}(x)=0 & \Rightarrow-3 x^{2}-12 x-9=0 \\
& \Rightarrow-3\left(x^{2}+4 x+3\right)=0 \\
& \Rightarrow x^{2}+4 x+3=0 \\
& \Rightarrow(x+3)(x+1)=0 \\
& \Rightarrow x=-3 \quad \text { or } \quad x=-1
\end{aligned}
$$

93) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ is increasing on
Solution:

$f^{\prime}(x)=0$	$f^{\prime}(x)=-3 x^{2}-12 x-9$
	\Rightarrow
	$-3 x^{2}-12 x-9=0$
	\Rightarrow
	$\left.\Rightarrow x^{2}+4 x+3 x+3\right)=0$
	\Rightarrow
	$(x+3)(x+1)=0$
	$x=-3$ or $x=-1$

Hence, the function $f(x)$ is increasing on $(-3,-1)$.
94) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ has a relative minimum value at the point

Solution:

Hence, the function $f(x)$ has a relative minimum value at the point $(-3,1)$.
$f(-3)=-(-3)^{3}-6(-3)^{2}-9(-3)+1$ $=27-54+27+1=1$.
96) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ has an inflection point at
Solution:

$$
\left.\begin{array}{l}
\quad f^{\prime}(x)=-3 x^{2}-12 x-9 \\
f^{\prime \prime}(x)=0 \quad f^{\prime \prime}(x)=-6 x-12 \\
\Rightarrow \quad-6 x-12=0 \\
\Rightarrow \quad x=-6 x=12 \\
\Rightarrow \quad x=-2
\end{array}\right] \begin{array}{|c|c|c|}
\hline+ & - & \text { Sign of } f^{\prime \prime}(x) \\
\hline \cup & \bigcap & \begin{array}{c}
\text { Kind of } \\
\text { concavity }
\end{array} \\
\hline
\end{array}
$$

Hence, the function $f(x)$ has an inflection point at $(-2,3)$.
$f(-2)=-(-2)^{3}-6(-2)^{2}-9(-2)+1$

$$
=8-24+18+1=3
$$

98) The function $f(x)=-x^{3}-6 x^{2}-9 x+1 \quad$ concave upward on

Solution:

$$
f^{\prime}(x)=-3 x^{2}-12 x-9
$$

$$
f^{\prime \prime}(x)=-6 x-12
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad-6 x-12=0$
$\Rightarrow-6 x=12$
$\Rightarrow x=-\frac{12}{6}$
$\Rightarrow \quad x=-2$

+	-	Sign of $f^{\prime \prime}(x)$
\cup	\bigcap	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(-\infty,-2)$.
95) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ has a relative maximum value at the point

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=-3 x^{2}-12 x-9 \\
f^{\prime}(x)=0 & \Rightarrow-3 x^{2}-12 x-9=0 \\
& \Rightarrow-3\left(x^{2}+4 x+3\right)=0 \\
& \Rightarrow x^{2}+4 x+3=0 \\
& \Rightarrow(x+3)(x+1)=0 \\
& \Rightarrow x=-3 \quad \text { or } \quad x=-1
\end{aligned}
$$

$-3 \quad-1$

-	+	-	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum value at the point $(-1,5)$.
$f(-1)=-(-1)^{3}-6(-1)^{2}-9(-1)+1$

$$
=1-6+9+1=5 .
$$

97) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ concave downward on
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=-3 x^{2}-12 x-9 \\
& f^{\prime \prime}(x)=-6 x-12
\end{aligned}
$$

$$
f^{\prime \prime}(x)=0 \quad \Rightarrow \quad-6 x-12=0
$$

$$
\Rightarrow \quad-6 x=12
$$

$$
\Rightarrow \quad x=-\frac{12}{6}
$$

$$
\Rightarrow \quad x=-2
$$

$$
-2
$$

+	-	Sign of $f^{\prime \prime}(x)$
\cup	\bigcap	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-2, \infty)$.

