Workshop Solutions to Sections 1.1 and 1.2

1) $\{x \in \mathbb{R} \mid-3 \leq x \leq 3\}=[-3,3]$	2) $\{x \in \mathbb{R} \mid-2<x<5\}=(-2,5)$
3) $\{x \in \mathbb{R} \mid-2<x \leq 5\}=(-2,5]$	4) $\{x \in \mathbb{R} \mid-3 \leq x<3\}=[-3,3)$
5) $\{x \in \mathbb{R} \mid x \leq-2\}=(-\infty,-2]$	6) $\{x \in \mathbb{R} \mid x>-2\}=(-2, \infty)$
7) $(-1,7] \backslash(3,9)=$ Solution:	8) $(-1,7] \cup(3,9)=$ Solution:
$(-1,7] \backslash(3,9)=(-1,3]=\{x \in \mathbb{R} \mid-1<x \leq 3\}$	$(-1,7] \cup(3,9)=(-1,9)=\{x \in \mathbb{R} \mid-1<x<9\}$
9) $(-1,7] \cap(3,9)=$ Solution: $(-1,7] \cap(3,9)=(3,7]=\{x \in \mathbb{R} \mid 3<x \leq 7\}$	10) $\|-7.2\|=-(-7.2)=7.2$
	11) $\|0.14-\pi\|=\|0.14-3.14\|=\|-3\|=3$ OR $\|0.14-\pi\|=-(0.14-\pi)=\pi-0.14$
	12) $\|2-\pi\|=-(2-\pi)=\pi-2$
13) $\|\pi-2\|=\pi-2$	14) The solution of the inequality $-3 x+5<-13$ is Solution: $\begin{gathered} -3 x+5<-13 \\ -3 x<-13-5 \\ -3 x<-18 \\ \frac{-3 x}{-3}>\frac{-18}{-3} \\ x>6 \end{gathered}$ The solution set is $(6, \infty)=\{x \in \mathbb{R} \mid x>6\}$.
15) The solution of the inequality $11>5-3 x \geq-13$ is Solution:	16) If $2 x+3=1-6(x-1)$, then $x=$ Solution:
$\begin{gathered} 11>5-3 x \geq-13 \\ 11-5>-3 x \geq-13-5 \\ 6>-3 x \geq-18 \\ \frac{6}{-3}<\frac{-3 x}{-3} \leq \frac{-18}{-3} \\ -2<x \leq 6 \end{gathered}$ The solution set is $(-2,6]=\{x \in \mathbb{R} \mid-2<x \leq 6\}$.	$\begin{gathered} 2 x+3=1-6(x-1) \\ 2 x+3=1-6 x+6 \\ 2 x+6 x=1+6-3 \\ 8 x=4 \\ x=\frac{4}{8} \\ x=\frac{1}{2} \end{gathered}$

17) The solution of the inequality $x^{2}-5 x+6>0$ is Solution:

$$
\begin{array}{ll}
& x^{2}-5 x+6>0 \\
\Leftrightarrow \quad & (x-2)(x-3)>0
\end{array}
$$

The transition points are 2 and 3 . We should now investigate the sign of $(x-2)(x-3)$ where is >0.

2		3	
Sign of $(x-2)(x-3)$	+++	---	+++
Solution	Yes	No	Yes

The solution set is $(-\infty, 2) \cup(3, \infty)$.
19) The solution of the inequality $x^{2}-5 x+6 \leq 0$ is Solution:

$$
\begin{gathered}
x^{2}-5 x+6 \leq 0 \\
(x-2)(x-3) \leq 0
\end{gathered}
$$

The transition points are 2 and 3 . We should now investigate the sign of $(x-2)(x-3)$ where is ≤ 0.

2			
Sign of $(x-2)(x-3)$	+++	---	+++
Solution	No	Yes	No

The solution set is $[2,3]$.
21) The solution of the inequality $x^{2}-x \geq 2$ is

Solution:

$$
\begin{gathered}
x^{2}-x \geq 2 \\
x^{2}-x-2 \geq 0 \\
\Leftrightarrow(x-2)(x+1) \geq 0
\end{gathered}
$$

The transition points are -1 and 2 . We should now investigate the sign of $(x-2)(x+1)$ where is ≥ 0.

-1					
Sign of					
$(x-2)(x+1)$				$)+++$	2
:---					

The solution set is $(-\infty,-1] \cup[2, \infty)$.
18) The solution of the inequality $x^{2}-5 x+6 \geq 0$ is Solution:

$$
\begin{array}{ll}
& x^{2}-5 x+6 \geq 0 \\
\Leftrightarrow \quad & (x-2)(x-3) \geq 0
\end{array}
$$

The transition points are 2 and 3 . We should now investigate the sign of $(x-2)(x-3)$ where is ≥ 0.

	3		
Sign of $(x-2)(x-3)$	+++	---	+++
Solution	Yes	No	Yes

The solution set is $(-\infty, 2] \cup[3, \infty)$.
20) The solution of the inequality $x^{2}-5 x<-6$ is Solution:

$$
\begin{gathered}
x^{2}-5 x<-6 \\
x^{2}-5 x+6<0 \\
\Leftrightarrow \quad(x-2)(x-3)<0
\end{gathered}
$$

The transition points are 2 and 3 . We should now investigate the sign of $(x-2)(x-3)$ where is <0.

2		3	
Sign of $(x-2)(x-3)$	+++	---	+++
Solution	No	Yes	No

The solution set is $(2,3)$.
22) The solution of the inequality $x^{2}-x \leq 2$ is Solution:

$$
\begin{gathered}
x^{2}-x \leq 2 \\
x^{2}-x-2 \leq 0 \\
\Leftrightarrow(x-2)(x+1) \leq 0
\end{gathered}
$$

The transition points are -1 and 2 . We should now investigate the sign of $(x-2)(x+1)$ where is ≤ 0.

	-1		2
Sign of $(x-2)(x+1)$	+ + +	- - -	+ + +
Solution	No	Yes	No

The solution set is $[-1,2]$.
23) The solution of the inequality $x^{2}-x>2$ is Solution:

$$
\begin{gathered}
x^{2}-x>2 \\
x^{2}-x-2>0 \\
\Leftrightarrow(x-2)(x+1)>0
\end{gathered}
$$

The transition points are -1 and 2 . We should now investigate the sign of $(x-2)(x+1)$ where is >0.

	-1		2
Sign of $(x-2)(x+1)$	+ + +	- - -	+ + +
Solution	Yes	No	Yes

24) If $|3 x-7|=2$, then $x=$

Solution:

\[

\]

The solution set is $(-\infty,-1) \cup(2, \infty)$.
25) If $|x-4|=3$, then $x=$

Solution:

\[

\]

26) The solution of the inequality $|x-3|<4$ is Solution:

$$
\begin{gathered}
|x-3|<4 \\
-4<x-3<4 \\
-4+3<x<4+3 \\
-1<x<7
\end{gathered}
$$

The solution set is $(-1,7)=\{x \in \mathbb{R} \mid-1<x<7\}$.
28) The solution of the inequality $|x-3|>4$ is Solution:

\[

\]

The solution set is $(-\infty,-1) \cup(7, \infty)$.
30) The distance between the real numbers
-5 and 6 is
Solution:
The distance $(d)=|(-5)-(6)|=|-11|=-(-11)$

$$
=11
$$

The solution set is $(-\infty,-1] \cup[7, \infty)$.
31) The distance between the real numbers
32) The distance between the points

$$
\frac{15}{8} \text { and } \frac{23}{12} \text { is }
$$

Solution:
The distance $(d)=\left|\left(\frac{15}{8}\right)-\left(\frac{23}{12}\right)\right|=\left|\frac{45-46}{24}\right|$

$$
=\left|-\frac{1}{24}\right|=-\left(-\frac{1}{24}\right)=\frac{1}{24}
$$

33) The distance between the pairs

$$
(-2,5) \text { and }(1,1) \text { is }
$$

Solution:

$d=\sqrt{(-2-1)^{2}+(5-1)^{2}}=\sqrt{(-3)^{2}+(4)^{2}}$

$$
=\sqrt{9+16}=\sqrt{25}=5
$$

34) If $x^{2}-3 x=4$, then $x=$

Solution:

First, we write $x^{2}-3 x-4=0$

$$
\begin{aligned}
& \Rightarrow \quad(x-4)(x+1)=0 \\
& \Rightarrow \quad x-4=0 \quad \text { or } \quad x+1=0 \\
& \Rightarrow \quad x=4 \quad \text { or } \quad x=-1
\end{aligned}
$$

35) If $3 x^{2}-6=0$, then $x=$

Solution:

$$
\begin{array}{rc}
& 3 x^{2}-6=0 \\
\Rightarrow & 3 x^{2}=6 \\
\Rightarrow & x^{2}=\frac{6}{3} \\
\Rightarrow & x^{2}=2 \\
\Rightarrow & x= \pm \sqrt{2}
\end{array}
$$

37) The solution of the equation

$$
3(x-2)=2(x+1)+7 \text { is }
$$

Solution:

$$
\begin{aligned}
3(x-2) & =2(x+1)+7 \\
3 x-6 & =2 x+2+7 \\
3 x-2 x & =2+7+6 \\
x & =15
\end{aligned}
$$

39) If $x^{2}+25=10 x$, then $x=$

Solution:

$$
\begin{gathered}
x^{2}+25=10 x \\
x^{2}-10 x+25=0 \\
(x-5)(x-5)=0 \\
x=5 \text { (repeated) }
\end{gathered}
$$

41) If $9(2 x+8)=20-(x+5)$, then $x=$

Solution:

$$
\begin{gathered}
9(2 x+8)=20-(x+5) \\
18 x+72=20-x-5 \\
18 x+x=20-5-72 \\
19 x=-57 \\
x=-\frac{57}{19} \\
x=-3
\end{gathered}
$$

43) The solution of the equation

$$
2 x^{2}-3 x=5 \text { is }
$$

Solution:

$$
\begin{gathered}
2 x^{2}-3 x=5 \\
2 x^{2}-3 x-5=0 \\
a=2, b=-3, \quad c=-5 \\
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(2)(-5)}}{2(2)} \\
=\frac{3 \pm \sqrt{9+40}}{4}=\frac{3 \pm \sqrt{49}}{4}=\frac{3 \pm 7}{4} \\
\therefore \quad x_{1}=\frac{3+7}{4}=\frac{10}{4}=\frac{5}{2} \\
x_{2}=\frac{3-7}{4}=\frac{-4}{4}=-1
\end{gathered}
$$

Therefore, the solution of the equation is

$$
x=-1 \text { or } x=\frac{5}{2}
$$

36) If $x(x-5)=14$, then $x=$

Solution:
First, we write $x(x-5)=14$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}-5 x=14 \\
& \Rightarrow \quad x^{2}-5 x-14=0 \\
& \Rightarrow \quad(x-7)(x+2)=0 \\
& \Rightarrow \quad x-7=0 \quad \text { or } \quad x+2=0 \\
& \Rightarrow \quad x=7 \quad \text { or } \quad x=-2
\end{aligned}
$$

38) The solution of the equation

$$
2 x+3=\frac{x}{2}+9 \text { is }
$$

Solution:

$$
\begin{aligned}
2 x+3 & =\frac{x}{2}+9 \\
4 x+6 & =x+18 \\
4 x-x & =18-6 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

40) If $x^{2}-36=0$, then $x=$

Solution:

$$
\begin{gathered}
x^{2}-36=0 \\
x^{2}=36 \\
x= \pm \sqrt{36} \\
x= \pm 6
\end{gathered}
$$

42) If $2(x-5)+8=5 x+3$, then $x=$

Solution:

$$
\begin{gathered}
2(x-5)+8=5 x+3 \\
2 x-10+8=5 x+3 \\
2 x-5 x=3-8+10 \\
-3 x=5 \\
x=-\frac{5}{3}
\end{gathered}
$$

44) The solution of the equation

$$
x^{3}-2 x^{2}-3 x=0 \text { is }
$$

Solution:

$$
\begin{gathered}
x^{3}-2 x^{2}-3 x=0 \\
x\left(x^{2}-2 x-3\right)=0 \\
x(x+1)(x-3)=0 \\
\Leftrightarrow \quad x=0 \quad \text { or } x+1=0 \quad \text { or } \quad x-3=0 \\
\Leftrightarrow \quad x=0 \quad \text { or } x=-1 \quad \text { or } x=3
\end{gathered}
$$

45) The solution of the equation 4 46) The solution of the equation

$$
4 x=\frac{2 x+1}{3}-2 \text { is }
$$

Solution:

$$
\begin{gathered}
4 x=\frac{2 x+1}{3}-2 \\
12 x=(2 x+1)-6 \\
12 x=2 x+1-6 \\
12 x-2 x=1-6 \\
10 x=-5 \\
x=\frac{-5}{10} \\
x=-\frac{1}{2} \\
\hline
\end{gathered}
$$

47) The solution of the equation

$$
6 x^{2}+x=2 \text { is }
$$

Solution:

$$
\begin{gathered}
6 x^{2}+x=2 \\
6 x^{2}+x-2=0 \\
a=6, b=1, \quad c=-2 \\
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(1) \pm \sqrt{(1)^{2}-4(6)(-2)}}{2(6)} \\
=\frac{-1 \pm \sqrt{1+48}}{12}=\frac{-1 \pm \sqrt{49}}{12}=\frac{-1 \pm 7}{12} \\
\therefore \quad x_{1}=\frac{-1+7}{12}=\frac{6}{12}=\frac{1}{2} \\
x_{2}=\frac{-1-7}{12}=\frac{-8}{12}=-\frac{2}{3}
\end{gathered}
$$

Therefore, the solution of the equation is

$$
x=-\frac{2}{3} \quad \text { or } \quad x=\frac{1}{2}
$$

49) $[0, \infty) \backslash\{1,2\}=$

Solution:

$$
[0, \infty) \backslash\{1,2\}=[0,1) \cup(1,2) \cup(2, \infty)
$$

48) The solution of the equation

$$
2 x^{2}+3=-7 x \text { is }
$$

Solution:

$$
\begin{gathered}
2 x^{2}+3=-7 x \\
2 x^{2}+7 x+3=0 \\
a=2, b=7, \quad c=3 \\
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(7) \pm \sqrt{(7)^{2}-4(2)(3)}}{2(2)} \\
=\frac{-7 \pm \sqrt{49-24}}{4}=\frac{-7 \pm \sqrt{25}}{4} \\
=\frac{-7 \pm 5}{4} \\
\therefore \quad x_{1}=\frac{-7+5}{4}=\frac{-2}{4}=-\frac{1}{2} \\
x_{2}=\frac{-7-5}{4}=\frac{-12}{4}=-3
\end{gathered}
$$

Therefore, the solution of the equation is

$$
x=-\frac{1}{2} \text { or } x=-3
$$

50) The integer in \mathbb{Z} is $\sqrt{25}=5$.
51) The rational in \mathbb{Q} is $\frac{2}{3}$.
52) The irrational in \mathbb{I} is $\sqrt{2}$.
