Instructor Problems:

Q1- If
$$\vec{a} = -\hat{\imath} + 2\hat{\jmath}$$
 and $\vec{b} = 5\hat{\imath} + 3\hat{\jmath}$ Find: $|a|$, $|b|$, $\vec{a}+\vec{b}$, $|\vec{a}+\vec{b}|$, θ_{a+b} , $\vec{a}-\vec{b}$, $|\vec{a}-\vec{b}|$, θ_{a-b} , $3\vec{a}+2\vec{b}$, $|3\vec{a}+2\vec{b}|$, θ_{3a+2b}

Q2- If
$$\vec{a}=2\hat{\imath}+2\hat{\jmath}-\hat{k}$$
 and $\vec{b}=5\hat{\imath}-3\hat{\jmath}+2\hat{k}$ Find:

- a) The angle between two vectors.
- b) A unit vector that in the same direction of \vec{a} .
- c) A unit vector that in the same direction of \vec{b} .
- d) the scalar and vector projection of \vec{b} along \vec{a} .
- e) the scalar and vector projection of \vec{a} along \vec{b} .

Q3- If
$$\vec{a}=2\hat{\imath}+3\hat{\jmath}+4\hat{k}$$
 , $\vec{b}=\hat{\imath}-2\hat{\jmath}-2\hat{k}$ and $\vec{c}=3\hat{\imath}+2\hat{\jmath}$, Show that:

a)
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

b)
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

c)
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

Chapter (3): Linear Equations; Vectors, Matrices, and Determinants

Section (4) P. (104-105): 9, 10, 12, 13, 15(a), 18, 20

PROBLEMS, SECTION 4

- 9. Let A = 2i + 3j and B = 4i 5j. Show graphically, and find algebraically, the vectors -A, 3B, A B, B + 2A, $\frac{1}{2}(A + B)$.
- 10. If A + B = 4j i and A B = i + 3j, find A and B algebraically. Show by a diagram how to find A and B geometrically.
- 12. Find the angle between the vectors A = -2i + j 2k and B = 2i 2j.
- 13. If A = 4i 3k and B = -2i + 2j k, find the scalar projection of A on B, the scalar projection of B on A, and the cosine of the angle between A and B.
- 15. Let A = 2i j + 2k. (a) Find a *unit* vector in the same direction as A. *Hint*: Divide A by |A|.
- 18. Show that 2i j + 4k and 5i + 2j 2k are orthogonal (perpendicular). Find a third vector perpendicular to both.
- 20. Find a vector perpendicular to both i + j and i 2k.

Chapter (6): Vector Analysis

Section (3) P. (242): 1

PROBLEMS, SECTION 3

1. If A = 2i - j - k, B = 2i - 3j + k, C = j + k, find $(A \cdot B)C$, $A(B \cdot C)$, $(A \times B) \cdot C$, $A \cdot (B \times C)$, $(A \times B) \times C$, $A \times (B \times C)$.

8. In polar coordinates, the position vector of a particle is $r = re_r$. Using (4.13), find the velocity and acceleration of the particle.

Supporting Materials:

FIGURE 4.3

One straightforward way to do this is to express the unit vectors e_r and e_θ in terms of i and j. From Figure 4.3, we see that the x and y components of e_r are $\cos \theta$ and $\sin \theta$. Thus we have

(4.11)
$$e_r = \mathbf{i} \cos \theta + \mathbf{j} \sin \theta.$$

Similarly (Problem 7) we find

$$\mathbf{e}_{\theta} = -\mathbf{i} \sin \theta + \mathbf{j} \cos \theta.$$

Differentiating e_r and e_θ with respect to t, we get

(4.13)
$$\frac{d\mathbf{e_r}}{dt} = -\mathbf{i} \sin \theta \frac{d\theta}{dt} + \mathbf{j} \cos \theta \frac{d\theta}{dt} = \mathbf{e_\theta} \frac{d\theta}{dt},$$

$$\frac{d\mathbf{e_\theta}}{dt} = -\mathbf{i} \cos \theta \frac{d\theta}{dt} - \mathbf{j} \sin \theta \frac{d\theta}{dt} = -\mathbf{e_r} \frac{d\theta}{dt}.$$

PROBLEMS, SECTION 6

- 1. Find the gradient of $w = x^2y^3z$ at (1, 2, -1).
- 3. Find the derivative of $xy^2 + yz$ at (1, 1, 2) in the direction of the vector 2i j + 2k.
- 5. Find the gradient of $\phi = z \sin y xz$ at the point $(2, \pi/2, -1)$. Starting at this point, in what direction is ϕ decreasing most rapidly? Find the derivative of ϕ in the direction 2i + 3j.
- **9.** (a) Given $\phi = x^2 y^2 z$, find $\nabla \phi$ at (1, 1, 1).
 - (b) Find the directional derivative of ϕ at (1, 1, 1) in the direction i 2j + k.

find the following gradients in two ways and show that your answers are equivalent.

20.
$$\nabla(r^2)$$

where $r = \sqrt{x^2 + y^2}$, using (6.7) and also using (6.3). Show that your results are the same by using (4.11) and (4.12).

Supporting Materials:

(6.7)
$$\nabla \phi = \mathbf{e}_r \frac{\partial \phi}{\partial r} + \mathbf{e}_\theta \frac{1}{r} \frac{\partial \phi}{\partial \theta}.$$

(6.3)
$$\nabla \phi = \text{grad } \phi = \mathbf{i} \frac{\partial \phi}{\partial x} + \mathbf{j} \frac{\partial \phi}{\partial y} + \mathbf{k} \frac{\partial \phi}{\partial z}$$
.

And

$$(4.11) e_r = \mathbf{i} \cos \theta + \mathbf{j} \sin \theta.$$

$$(4.12) e_{\theta} = -i \sin \theta + j \cos \theta.$$

PROBLEMS, SECTION 7

Compute the divergence and the curl of each of the following vector fields.

1.
$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$2. \quad \mathbf{r} = x\mathbf{i} + y\mathbf{j}$$

3.
$$\mathbf{V} = z\mathbf{i} + y\mathbf{j} + x\mathbf{k}$$

$$\mathbf{6.} \quad \mathbf{V} = x^2 y \mathbf{i} + y^2 x \mathbf{j} + x y z \mathbf{k}$$

7.
$$V = x \sin y i + \cos y j + xyk$$

Calculate the Laplacian ∇^2 of each of the following scalar fields.

9.
$$x^3 - 3xy^2 + y^3$$

10.
$$\ln(x^2 + y^2)$$

11.
$$\sqrt{x^2 - y^2}$$

12.
$$(x + y)^{-1}$$

For r = xi + yj + zk, evaluate

19.
$$\nabla \cdot \left(\frac{\mathbf{r}}{|\mathbf{r}|}\right)$$

20.
$$\nabla \times \left(\frac{r}{|r|}\right)$$

21.
$$(\nabla^2 r^3)$$

Disclaimer:
All the problems and excerpts above have been borrowed from the book of "Mathematical Methods in
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the students' assignments.
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the
the Physical Sciences" 2 nd Edition by Mary L. Boas, and it was done only for the purpose of outlining the