

King Abdulaziz University

Faculty of Science - Chemistry Department

Chem-110, First Exam

??? 00 /04/1435 H

Time: 90 minutes

 Number:
 Section:

 • Useful information:

 Speed of light,
 $C = 3.0 \times 10^8 \text{ m/s}$

 Planck's const.,
 $h = 6.626 \times 10^{-34} \text{ J.s}$

 Avogadro's No.,
 $N_{av} = 6.022 \times 10^{23} \text{ mol}^{-1}$

 Rydberg const. for H atom
 $R_H = 2.18 \times 10^{-18} \text{ J}$

 Mass of the electron,
 $m_e = 9.11 \times 10^{-31} \text{ kg}$

 Gas constant,
 $R = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}$

1 H Hydrogen 1	A la		E (b	T	M ba	PI		ODI	C T		E	102	bas	01 (Hellum 2
7 Li Lithium 3	9 Be Beryllium 4	enud		Ca	roon	→ Syr	nbol	vhole n	umbe	г		B Boron 5	C Carbon 6	N N Nitrogen 7	O O Oxygen 8	F Flourine	Ne Neos 10
Na Na Sodium	Mg Mg Magnesium 12	(b			6	→ Ato	mic n	umber			đ	27 Al Aluminum 13	28 Si Silicon 14	Phosphorus	32 S Sulfar 16	35.5 Cl Chiorine 17	40 Ar Argon 18
X Potassium 19	Ca Calcium 20	Sc Scandium 21	48 Ti Titanium 22	Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	Fe Iron 26	59 Co Cobalt 27	Ni Nickel 28	63.5 Cu Cepper 29	65 Zn Zine 30	70 Ga Gallium 31	72.5 Ge Germanium 32	75 As Amenic 33	79 Se Selenium 34	Br Bromine 35	Kr Kryptor 36
Rb Rubidium 37	86 Sr Strontium 38	Y Yttrium 39	91 Zr Zirconium 40	93 Nb Nioblum 41	96 Mo Molybdenum 42	(96) Tc Technetium 43	Ru Ruthenium 44	Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cd Cadmium 48	In In Indiam 49	119 Sn Tin 50	Sb Antimony 51	Te Tellurium 52	127 I lodine 53	Xe Xenon 54
Cs Cestum 55	Ba Barium 56	La La Lanthanun 57	178.5 Hf Hafnium 72	Ta Ta Tantalum 73	184 W Tungsten 74	Re Re Rhenium 75	Os Osmium 76	192 Ir Iridium 77	Pt Platinum 78	197 Au Gold 79	Hg Mercury 80	204 Tl Thallium 81	207 Pb Land 82	Bi Bi Blamuth 83	Po Polosium 84	(210) At Astation 85	(222 Rn Radon 86
(223) Fr Francium 87	(226) Ra Radium 88	(227) Ac Actinium 89	(261) Rf Rutherfordium 104	(262) Db Dubnium 105	(266) Sg Seaborgium 106	(264) Bh Bohrium 107	(265) Hs Hsssium 108	(268) Mt Meitherium 109	onto	To be	E NO	loss	gener	- wol	17.		
		140 Ce Cerium 58	Praseodymium 59	144 Nd Neodymium 60	Promethium 61	150 Sm Semerium 62	152 Eu Europium 63	157 Gd Gadolinium 64	Tb Turbium 65	162.5 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thullum 69	173 Yb Ytterbium 70	175 Lu Luterium 71		
		232 Th Thorium 90	Pa Pa Protectinium 91	Uranium 92	237 Np Neptunium 93	Plutonium 94	(243) Am Americium 95	(247) Cm Curtum 96	(247) Bk Berkelium 97	(251) Cf Californium 98	(252) Es Einsteinium 99	(257) Fm Fermium 100	(258) Md Mendelsvium 101	(259) No Nobelium 102	(262) Lr Lawrencium 103		

Page 1

Choose the correct answer:

(1) Homogeneous mixture is called:

- A. An element
- B. A compound
- C. A solution
- D. An electron

(2) What is the formula mass of (NH₄)₂CrO₄?

- A. 152 g/mol
- B. 78 g/mol
- C. 134 g/mol
- D. 102 g/mol

(3) In the periodic table the horizontal rows contain elements which

- A. Belong to the same family
- B. Exhibit similar chemical reactions.
- C. Belong to the same period
- D. Are represented by same number of example

(4) If the solubility of a salt is 36.0 g /100 g-water, what is the minimum of water that would dissolve 51.0 g of salt?

- A. 72 g
- B. 142 g
- C. 180 g
- D. 360 g

(5) The two malor types of pure substances are

- A. Compounds & Solutions
- C. Compounds & Elements

B. Elements & Mixtures

D. Solutions & Elements

(6) A balloon with a volume of 8.73 L contains 0.321 moles of helium gas. What is the density of the gas?

- A. 0.0368 g/L
- B. 0.147 g/L
- C. 0.700 g/L
- D. 2.80 g/L

(7) Use the following table and choose which of the species are positively charged?

Atom or ion of element	ı	П	Ш	IV	V	VI
Atom or ion of element (e)	6	10	18	10	28	7
Atom or ion of element (p)	6	8	17	11	30	7
Atom or ion of element (n)	6	8	18	11	36	6

- A. III and V
- B. II and III
- C. IV and V
- D. I and VI

(8) The correct value and units for the problem

$$\frac{0.0999 \, \text{mol/L NaOH x 5 L x (23+1+16) g}}{1 \, \text{mol NaOH}} \div \frac{1.2042 \, \text{x } 10^{24} \, \text{NaOH Molecules}}{6.022 \, \text{x } 10^{23} \, \text{NaOH Molecules}} =$$

- A. 40 g
- B. 10 g
- C. 40 L
- D. 10 L

(9) The SI Base Unit for length is:

- A. meter
- B. kilometer
- C. mile
- D. foot

(10) The product of the reaction between Al and O_2 is predicted to be

- A. AIO
- B. AlO₂
- C. Al_2O_3
- D. AlO₄

(11) Which is the larges	st mass?						
A. 0.5 kg	B. 0.5 g	C. 50 g	D. 500 mg				
(12) Which of the follow	wing SI prefixes expi	ress the 1 x 10 ⁻³ mete	r:				
A. kilo	B. deci	C. centi	D. m	nilli			
(13) Express 7500 mm a	as picometer:						
A. 7.5 pm	B. 7.5 x 10 ⁶ pm	C. 7.5 pm	D. 7.5 x 10 ²	¹² pm			
(14) The mole ratio of N	NaOH to I ₂ is found t	o be: (for the followi	ng equation)				
NaOH (s	s) + l ₂ (/)>	_Nal (s) + NalO ₃ (s)	+H ₂ O (/)				
A. 2/1	B. 6/5	C. 5/1	D. 1/3				
(15) The following set of	of data for a compou	ınd illustrates best w	hich law?				
Mg	Cl	Mg/Cl					
24.0g	71.0g	0.338					
12.0g	35.5g	0.338					
A. multiple propo	ortions	B. Definite composition					
C. conservation of	of mass	D. Dulong and Petit					
(16) The sulfide ion, S ²⁻	has (p = protons and	d e = electrons)					
A. 16 p and 18 e		C. 16 p and	d 16 e				
B. 16 p and 14 e		D. 16 p and	d 10 e				
(17) Given the formulas	s MgBr ₂ and AlCl ₃ , w	hich other formulas	would NOT be	predicted:			
A. MgCl ₂	B. MgF ₃	C. AlBr ₃		D. All ₃			
(18) The compound silic	con tetrafluoride wo	ould have the formula	a				
A. SiF	B. SiF ₄	C. Si ₄ F	D. S ₂ F				
(19) How many grams of	of Na ₃ PO ₄ are requir	es to make one mole	?				
A. 164g	B. 118g	C. 8	32g	D. 70g			
(20) A family which eas	•		_,				
A. alkali metals (Group 1)	• , ,	C. halogen (Group 7)				
B. noble gases		D. transition met	als				
(21) How many sodium			25				
A. 3.41 x10 ²² ato		C. 3.41 x 1					
B. 4.71 x 10 ²¹ ato	om	D. 5.41 x 1	.0 ²² atom				

	e of a compound contain og CO2 and 3.32 g nitrogo	~	bon, nitrogen and hydrogen ical formula?					
A. C_2H_3N	B. $C_4H_2N_2$	$C. C_2H_2N_2$						
A. 88 protons	mon isotope of radium is s and 226 neutrons. ns and 314 neutrons.	B. 138 protons an	d 88 neutrons.					
(24) According to th	ne following equation, if	6 mol (Fe ₂ (CO ₃) ₃ ar	e mixed with 10 mol of H ⁺					
Fe ₂ (C	$Fe_2(CO_3)_3$ (s) + 6 H ⁺ (aq) \longrightarrow 2 Fe ³⁺ (aq) + 6 CO ₂ (g) + 3 H ₂ O							
B. all of the F C. 3.3 mol of	$e_2(CO_3)_3$ will react. H^+ will react. $Fe_2(CO_3)_3$ will react. H^+ will remain unreacted	d.						
	.665 M KMnO ₄ solution is entration of the final solu B. 0.807 M		of $0.892M$ KMnO ₄ solution. D. 0.411 M					
(26) Determine the volume of 0.1 M KOH required to react exactly with 0.02 mol of $NiCl_2$ to form a precipitate of $Ni(OH)_2$.								
2	KOH (aq) + NiCl ₂ (s) —	→ Ni(OH) ₂ (aq) + 2 l	(CI (aq)					
A. 400 mL	B. 200 mL	C. 40 mL	D. 20 mL					
(27) How many mol	les of Cl ¹⁻ are in 20.0 mL o B. 0.76	of 0.40 M MgCl ₂ ? C. 0.016	D. 1900					
(28) How many milliliters of water must be added to 267 mL of 0.15 M Na ₂ CO ₃ to prepare								
0.05 M Na₂CO₃? (A) 536.0 ml	(B) 534.0 ml	(C) 530.0 ml	(D) 537.0 ml					
(29) In the following equation, if 62 g CaCO_3 are decomposed and 259 g CaO are collected, how many grams of CO_2 are generated?								
	$CaCO_3$ (s) \longrightarrow	CaO (s) + CO ₂ (g)						
A. 44 g	B. 100 g	C. 203 g	D. 667 g					
(30) The following reaction be ns with 40.0 g Ca and an excess Br ₂ . The yield is 50%. How many grams of CaBr ₂ are produced?								
Ca (s) + $Br_2(I) \longrightarrow CaBr_2(s)$								
A. 20 g	B. 100 g	C. 200 g	D. 60 g					

المصطلح الانجليزي		المصطلح الانجليزي	
Begin	يبدأ	Homogeneous	
Calculate		horizontal	
Collected	تجميع	illustrates	
common isotope	نظیر عام	largest	
concentration	تركيز	length	
containing	يتكون	mixed	
correct value	قيمة صحيحة	periodic table	
decompose	يتكسر	positively charged	
density		Predict	يتنبأ
Determine	تقدير	prepare	تحضير ينتد
empirical formula	صيغة أولية (بسيطة)	Produce	ينتد
Equation		react	يتفاعل
exactly		remain	ř
Express	يعبر	required	يتطلب
final	نهائي	solubility of a salt	ذوبانية الملح
forms	يتكون	Solution	
Formula	صيغة	species	جسيمات
Gas		types of pure substances	أنواع المواد النقية
Generated	ينتج	volume	
		yield	