King Abdulaziz University Faculty of Science - Chemistry Department Chem-110, First Exam ??? 00 /04/1435 H Time: 90 minutes Number: Section: • Useful information: Speed of light, $C = 3.0 \times 10^8 \text{ m/s}$ Planck's const., $h = 6.626 \times 10^{-34} \text{ J.s}$ Avogadro's No., $N_{av} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Rydberg const. for H atom $R_H = 2.18 \times 10^{-18} \text{ J}$ Mass of the electron, $m_e = 9.11 \times 10^{-31} \text{ kg}$ Gas constant, $R = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}$ | 1
H
Hydrogen
1 | A la | | E (b | T | M ba | PI | | ODI | C T | | E | 102 | bas | 01 (| | | Hellum
2 | |-------------------------------|-----------------------------|-------------------------------|-------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--------------------------------|----------------------------------|-------------------------------|---------------------------| | 7
Li
Lithium
3 | 9
Be
Beryllium
4 | enud | | Ca | roon | → Syr | nbol | vhole n | umbe | г | | B
Boron
5 | C Carbon 6 | N
N
Nitrogen
7 | O
O
Oxygen
8 | F Flourine | Ne
Neos
10 | | Na
Na
Sodium | Mg
Mg
Magnesium
12 | (b | | | 6 | → Ato | mic n | umber | | | đ | 27
Al
Aluminum
13 | 28
Si
Silicon
14 | Phosphorus | 32
S
Sulfar
16 | 35.5
Cl
Chiorine
17 | 40
Ar
Argon
18 | | X
Potassium
19 | Ca
Calcium
20 | Sc
Scandium
21 | 48
Ti
Titanium
22 | Vanadium 23 | 52
Cr
Chromium
24 | 55
Mn
Manganese
25 | Fe Iron 26 | 59
Co
Cobalt
27 | Ni
Nickel
28 | 63.5
Cu
Cepper
29 | 65
Zn
Zine
30 | 70
Ga
Gallium
31 | 72.5
Ge
Germanium
32 | 75
As
Amenic
33 | 79
Se
Selenium
34 | Br
Bromine
35 | Kr
Kryptor
36 | | Rb
Rubidium
37 | 86
Sr
Strontium
38 | Y
Yttrium
39 | 91
Zr
Zirconium
40 | 93
Nb
Nioblum
41 | 96
Mo
Molybdenum
42 | (96)
Tc
Technetium
43 | Ru
Ruthenium
44 | Rh
Rhodium
45 | 106
Pd
Palladium
46 | 108
Ag
Silver
47 | Cd
Cadmium
48 | In
In
Indiam
49 | 119
Sn
Tin
50 | Sb
Antimony
51 | Te
Tellurium
52 | 127
I
lodine
53 | Xe
Xenon
54 | | Cs
Cestum
55 | Ba
Barium
56 | La
La
Lanthanun
57 | 178.5
Hf
Hafnium
72 | Ta
Ta
Tantalum
73 | 184
W
Tungsten
74 | Re
Re
Rhenium
75 | Os
Osmium
76 | 192
Ir
Iridium
77 | Pt Platinum 78 | 197
Au
Gold
79 | Hg
Mercury
80 | 204
Tl
Thallium
81 | 207
Pb
Land
82 | Bi
Bi
Blamuth
83 | Po
Polosium
84 | (210)
At
Astation
85 | (222
Rn
Radon
86 | | (223)
Fr
Francium
87 | (226)
Ra
Radium
88 | (227)
Ac
Actinium
89 | (261)
Rf
Rutherfordium
104 | (262)
Db
Dubnium
105 | (266)
Sg
Seaborgium
106 | (264)
Bh
Bohrium
107 | (265)
Hs
Hsssium
108 | (268)
Mt
Meitherium
109 | onto | To be | E NO | loss | gener | - wol | 17. | | | | | | 140
Ce
Cerium
58 | Praseodymium 59 | 144
Nd
Neodymium
60 | Promethium
61 | 150
Sm
Semerium
62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | Tb
Turbium
65 | 162.5
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thullum
69 | 173
Yb
Ytterbium
70 | 175
Lu
Luterium
71 | | | | | | 232
Th
Thorium
90 | Pa
Pa
Protectinium
91 | Uranium
92 | 237
Np
Neptunium
93 | Plutonium
94 | (243)
Am
Americium
95 | (247)
Cm
Curtum
96 | (247)
Bk
Berkelium
97 | (251)
Cf
Californium
98 | (252)
Es
Einsteinium
99 | (257)
Fm
Fermium
100 | (258)
Md
Mendelsvium
101 | (259)
No
Nobelium
102 | (262)
Lr
Lawrencium
103 | | | Page 1 ## Choose the correct answer: #### (1) Homogeneous mixture is called: - A. An element - B. A compound - C. A solution - D. An electron #### (2) What is the formula mass of (NH₄)₂CrO₄? - A. 152 g/mol - B. 78 g/mol - C. 134 g/mol - D. 102 g/mol ### (3) In the periodic table the horizontal rows contain elements which - A. Belong to the same family - B. Exhibit similar chemical reactions. - C. Belong to the same period - D. Are represented by same number of example # (4) If the solubility of a salt is 36.0 g /100 g-water, what is the minimum of water that would dissolve 51.0 g of salt? - A. 72 g - B. 142 g - C. 180 g - D. 360 g ### (5) The two malor types of pure substances are - A. Compounds & Solutions - C. Compounds & Elements B. Elements & Mixtures D. Solutions & Elements # (6) A balloon with a volume of 8.73 L contains 0.321 moles of helium gas. What is the density of the gas? - A. 0.0368 g/L - B. 0.147 g/L - C. 0.700 g/L - D. 2.80 g/L ## (7) Use the following table and choose which of the species are positively charged? | Atom or ion of element | ı | П | Ш | IV | V | VI | |----------------------------|---|----|----|----|----|----| | Atom or ion of element (e) | 6 | 10 | 18 | 10 | 28 | 7 | | Atom or ion of element (p) | 6 | 8 | 17 | 11 | 30 | 7 | | Atom or ion of element (n) | 6 | 8 | 18 | 11 | 36 | 6 | - A. III and V - B. II and III - C. IV and V - D. I and VI ## (8) The correct value and units for the problem $$\frac{0.0999 \, \text{mol/L NaOH x 5 L x (23+1+16) g}}{1 \, \text{mol NaOH}} \div \frac{1.2042 \, \text{x } 10^{24} \, \text{NaOH Molecules}}{6.022 \, \text{x } 10^{23} \, \text{NaOH Molecules}} =$$ - A. 40 g - B. 10 g - C. 40 L - D. 10 L ## (9) The SI Base Unit for length is: - A. meter - B. kilometer - C. mile - D. foot ## (10) The product of the reaction between Al and O_2 is predicted to be - A. AIO - B. AlO₂ - C. Al_2O_3 - D. AlO₄ | (11) Which is the larges | st mass? | | | | | | | |---------------------------------------|---|------------------------------------|--------------------------|---------------------|--|--|--| | A. 0.5 kg | B. 0.5 g | C. 50 g | D. 500 mg | | | | | | (12) Which of the follow | wing SI prefixes expi | ress the 1 x 10 ⁻³ mete | r: | | | | | | A. kilo | B. deci | C. centi | D. m | nilli | | | | | (13) Express 7500 mm a | as picometer: | | | | | | | | A. 7.5 pm | B. 7.5 x 10 ⁶ pm | C. 7.5 pm | D. 7.5 x 10 ² | ¹² pm | | | | | (14) The mole ratio of N | NaOH to I ₂ is found t | o be: (for the followi | ng equation) | | | | | | NaOH (s | s) + l ₂ (/)> | _Nal (s) + NalO ₃ (s) | +H ₂ O (/) | | | | | | A. 2/1 | B. 6/5 | C. 5/1 | D. 1/3 | | | | | | (15) The following set of | of data for a compou | ınd illustrates best w | hich law? | | | | | | Mg | Cl | Mg/Cl | | | | | | | 24.0g | 71.0g | 0.338 | | | | | | | 12.0g | 35.5g | 0.338 | | | | | | | A. multiple propo | ortions | B. Definite composition | | | | | | | C. conservation of | of mass | D. Dulong and Petit | | | | | | | (16) The sulfide ion, S ²⁻ | has (p = protons and | d e = electrons) | | | | | | | A. 16 p and 18 e | | C. 16 p and | d 16 e | | | | | | B. 16 p and 14 e | | D. 16 p and | d 10 e | | | | | | (17) Given the formulas | s MgBr ₂ and AlCl ₃ , w | hich other formulas | would NOT be | predicted: | | | | | A. MgCl ₂ | B. MgF ₃ | C. AlBr ₃ | | D. All ₃ | | | | | (18) The compound silic | con tetrafluoride wo | ould have the formula | a | | | | | | A. SiF | B. SiF ₄ | C. Si ₄ F | D. S ₂ F | | | | | | (19) How many grams of | of Na ₃ PO ₄ are requir | es to make one mole | ? | | | | | | A. 164g | B. 118g | C. 8 | 32g | D. 70g | | | | | (20) A family which eas | • | | _, | | | | | | A. alkali metals (| Group 1) | • , , | C. halogen (Group 7) | | | | | | B. noble gases | | D. transition met | als | | | | | | (21) How many sodium | | | 25 | | | | | | A. 3.41 x10 ²² ato | | C. 3.41 x 1 | | | | | | | B. 4.71 x 10 ²¹ ato | om | D. 5.41 x 1 | .0 ²² atom | | | | | | | e of a compound contain
og CO2 and 3.32 g nitrogo | ~ | bon, nitrogen and hydrogen ical formula? | | | | | | |--|---|--|---|--|--|--|--|--| | A. C_2H_3N | B. $C_4H_2N_2$ | $C. C_2H_2N_2$ | | | | | | | | A. 88 protons | mon isotope of radium is s and 226 neutrons. ns and 314 neutrons. | B. 138 protons an | d 88 neutrons. | | | | | | | (24) According to th | ne following equation, if | 6 mol (Fe ₂ (CO ₃) ₃ ar | e mixed with 10 mol of H ⁺ | | | | | | | Fe ₂ (C | $Fe_2(CO_3)_3$ (s) + 6 H ⁺ (aq) \longrightarrow 2 Fe ³⁺ (aq) + 6 CO ₂ (g) + 3 H ₂ O | | | | | | | | | B. all of the F
C. 3.3 mol of | $e_2(CO_3)_3$ will react.
H^+ will react.
$Fe_2(CO_3)_3$ will react.
H^+ will remain unreacted | d. | | | | | | | | | .665 M KMnO ₄ solution is
entration of the final solu
B. 0.807 M | | of $0.892M$ KMnO ₄ solution. D. 0.411 M | | | | | | | (26) Determine the volume of 0.1 M KOH required to react exactly with 0.02 mol of $NiCl_2$ to form a precipitate of $Ni(OH)_2$. | | | | | | | | | | 2 | KOH (aq) + NiCl ₂ (s) — | → Ni(OH) ₂ (aq) + 2 l | (CI (aq) | | | | | | | A. 400 mL | B. 200 mL | C. 40 mL | D. 20 mL | | | | | | | (27) How many mol | les of Cl ¹⁻ are in 20.0 mL o
B. 0.76 | of 0.40 M MgCl ₂ ?
C. 0.016 | D. 1900 | | | | | | | (28) How many milliliters of water must be added to 267 mL of 0.15 M Na ₂ CO ₃ to prepare | | | | | | | | | | 0.05 M Na₂CO₃? (A) 536.0 ml | (B) 534.0 ml | (C) 530.0 ml | (D) 537.0 ml | | | | | | | (29) In the following equation, if 62 g CaCO_3 are decomposed and 259 g CaO are collected, how many grams of CO_2 are generated? | | | | | | | | | | | $CaCO_3$ (s) \longrightarrow | CaO (s) + CO ₂ (g) | | | | | | | | A. 44 g | B. 100 g | C. 203 g | D. 667 g | | | | | | | (30) The following reaction be ns with 40.0 g Ca and an excess Br ₂ . The yield is 50%. How many grams of CaBr ₂ are produced? | | | | | | | | | | Ca (s) + $Br_2(I) \longrightarrow CaBr_2(s)$ | | | | | | | | | | A. 20 g | B. 100 g | C. 200 g | D. 60 g | | | | | | | المصطلح الانجليزي | | المصطلح الانجليزي | | |-------------------|--------------------|--------------------------|---------------------| | Begin | يبدأ | Homogeneous | | | Calculate | | horizontal | | | Collected | تجميع | illustrates | | | common isotope | نظیر عام | largest | | | concentration | تركيز | length | | | containing | يتكون | mixed | | | correct value | قيمة صحيحة | periodic table | | | decompose | يتكسر | positively charged | | | density | | Predict | يتنبأ | | Determine | تقدير | prepare | تحضير
ينتد | | empirical formula | صيغة أولية (بسيطة) | Produce | ينتد | | Equation | | react | يتفاعل | | exactly | | remain | ř | | Express | يعبر | required | يتطلب | | final | نهائي | solubility of a salt | ذوبانية الملح | | forms | يتكون | Solution | | | Formula | صيغة | species | جسيمات | | Gas | | types of pure substances | أنواع المواد النقية | | Generated | ينتج | volume | | | | | yield | |