Section:

CHOOSE THE CORRECT ANSWER

1. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $v_{y}=v_{o} \sin \theta+g t$
B) $v_{y}=v_{o} \sin \theta-g t$
C) $v_{y}=v_{o}(\cos \theta) t$
D) $v_{y}=v_{o}(\sin \theta) t$
2. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least?
A)

B)

C)

D)

3. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
C) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
D) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
4. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
А) 2245.9 m
B) 1598.6 m
C) 3064.6 m
D) 8957.4 m
5. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
B) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
D) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
6. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is:
A) accelerating downward
C) stationary
B) moving up with constant velocity.
D) accelerating upward
7. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:
A) 45.8 N
B) 25.4 N
C) 10.3 N
D) 19.6 N
8. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with $v=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
A) $\frac{a_{1}}{a_{2}}=2$
B) $a_{1}=a_{2}$
C) $a_{1}=a_{2}=0$
D) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
9. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is
A) $-5.21 \hat{i}$
В) $-7.98 \hat{i}$
C) $8.52 \hat{i}$
D) $12.4 \hat{i}$
10. The coefficient of static friction $\left(\mu_{s}\right)$:
A) is in the direction of motion
C) is dimensionless
B) has a magnitude of exactly 1
D) is in the direction of the normal force
11. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
A) 10 N
B) 7.14 N
C) 4.12 N
D) 13.2 N
12. The force that always perpendicular to the surface is called
A) Friction
B) Normal force
C) Tension
D) Gravitational force
13. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its initial height
B) the origin
C) the start point
D) its maximum height

Use the following to answer questions 14-15:
In the figure, a block of mass $\mathbf{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=$ 60°

14. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) $\mathrm{mg} \cos \theta$
B) mg
C) $m g \sin \theta$
D) $\mathrm{m} a$
15. The magnitude of the force that causes the block sliding down is
A) 150 N
B) 90.44 N
C) 311 N
D) 212.17 N

Use the following to answer questions 16-17:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
16. The velocity as a function of time is:
A) $t \hat{i}+6 t \hat{j}$
B) $10 t \hat{i}-3 t^{2} \hat{j}$
C) $10 \hat{i}-6 t^{2} \hat{j}$
D) $5 t \hat{i}-6 \hat{j}$
17. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $15 \hat{i}-5 \hat{j}$
В) $81 \hat{i}+3 \hat{j}$
C) $26 \hat{i}-7 \hat{j}$
D) $36 \hat{i}-3 \hat{j}$
18. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) π
B) $3 \pi^{3}$
C) 4π
D) 20
19. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
A) 607.5 N
B) 323.9 N
C) 523.4 N
D) 700.5 N
20. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10 s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
B) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
C) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
D) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
21. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
B) $3 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
D) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
22. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
А) $40 \mathrm{~m} / \mathrm{s}$
B) $80 \mathrm{~m} / \mathrm{s}$
C) $42.3 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$
23. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$
B) $\vec{a}_{\text {avg }}=3 \hat{i}$
C) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j}$
D) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
24. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
А) 6241.6 N
B) 3340.5 N
C) 4141.5 N
D) 1245.7 N
 velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
A) 85°
B) 49°
C) 33°
D) 67°
26. A particle is projected with an initial velocity $\vec{v}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $5 \mathrm{~m} / \mathrm{s}$
B) $7 \mathrm{~m} / \mathrm{s}$
C) $12 \mathrm{~m} / \mathrm{s}$
D) $2 \mathrm{~m} / \mathrm{s}$

A block of mass $\mathbf{m}=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

27. The free body diagram representing the forces on m is:
A)

B)

C)

D)

28. The magnitude of weight (W) in Newtons is equal to:
A) -49 N
B) 9.8 N
C) 49 N
D) -9.8 N
29. From the figure, $F_{\text {net }, x}$ on the block is:
A) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
B) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
C) $-\mathrm{T}_{1} \cos 30+\mathrm{T}_{2} \cos 45=0$
D) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
30. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 40 N
B) 50 N
C) 60 N
D) 57 N
31. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.6
B) 0.4
C) 0.8
D) 0.3

Use the following to answer questions 32-33:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

32. The magnitude of force \vec{F} on the four blocks is
A) 20 N
B) 60 N
C) 30 N
D) 40 N
33. The total mass accelerated to the right by Cord 3 is
A) 20 kg
B) 13 kg
C) 18 kg
D) 10 kg

Answer Key

1. B
2. A
3. C
4. C
5. C
6. D
7. D
8. B
9. B
10. C
11. C
12. B
13. A
14. A
15. D
16. B
17. D
18. C
19. A
20. A
21. A
22. C
23. D
24. B
25. D
26. A
27. B
28. C
29. C
30. B
31. B
32. B
33. C
