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0 Why study geometry?

Curves and surfaces are all around us in the natural world, and in the built environ-
ment. The first step in understanding these structures is to find a mathematically
natural way to describe them. That is the primary aim of this course, which will focus
particularly on the concept of curvature.

As a side effect, you will develop some very useful transferable skills. Key among
these is the ability to translate a mathematical system (a set of equations, or formulae,
or inequalities) into a visual picture. Your geometric intuition about the picture can
then give you useful insight into the original mathematical system. This trick of
visualizing mathematical systems can be very powerful and is, unfortunately, not
strongly emphasized in the teaching of maths.

Example 0 How does the number of solutions of the pair of simultaneous equations

xy = 1

x2 + y2 = a2

depend on the constant a > 0?
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x

x

1

2 So for a < a0 (in fact, a0 =
√

2), the
system has 0 solutions, for a = a0 it has
2 and for a > a0 it has 4. One could
easily verify this by solving the equations
explicitly, but the point is that visualizing
the system gave us a very quick (in fact,
almost instantaneous) short cut.

. �

The above example featured a pair of curves, each associated with an algebraic
equation. In fact, throughout this course we will think of curves in a rather different
way, not as a set of points satisfying an equation, but rather as the range of a suitable
mapping. That is, we will deal primarily with parametrized curves.

1 Regularly Parametrized Curves

1.1 Basic definitions

Let I ⊆ R be an open interval,

e.g. (0, π), (−∞, 1), R etc.

Recall that a function f : I → R is smooth if all its derivatives f ′(t), f ′′(t), f ′′′(t), . . .
exist for all t (shorthand: ∀ t ∈ I).

E.g. polynomials, trigonometric functions (sin, cos etc.), exponentials, logarithms,
hyperbolic trig functions (sinh, cosh etc.) are all smooth.

f : R → R such that f(t) = t
4

3 is not smooth. Check:

f ′(t) = ⇒ f ′′(t) =

so f ′′(0) does not exist.

We can extend this definition of smoothness to maps γ : I → R
n where n ≥ 2.

Such a map is a rule which assigns to each “time” t a vector

γ(t) = (γ1(t), γ2(t), . . . , γn(t)) ∈ R
n.

We say that the map γ is smooth if every one of its component functions γi : I → R,
i = 1, 2, . . . , n is smooth in the usual sense (all derivatives exist everywhere). We may
think of γ as describing the trajectory of a point particle moving in R

n. This leads
us to:
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Definition 1 A parametrized curve (PC) in R
n is a smooth map γ : I → R

n. A
time t ∈ I is a regular point of γ if γ′(t) 6= 0. If γ′(t) = 0, then t ∈ I is a singular
point of γ. If every t ∈ I is regular then γ is said to be a regularly parametrized
curve (RPC). In other words, a PC is a RPC if and only if

there does not exist a time t ∈ I such that γ′(t) = 0 = (0, 0, . . . , 0).

The image set of a curve γ is the range of the mapping, that is,

γ(I) = {γ(t) ∈ R
n | t ∈ I} ⊂ R

n
�

Example 2 Consider the parabola x2 = x2
1. There are infinitely many PCs whose

image set is this parabola.

x

x

1

2

Two examples:

γ : R → R
2, γ(t) = (t, t2)

δ : R → R
2, δ(t) = (t3, t6).

γ is a regularly parametrized curve:

γ′(t) =

But δ is not:

δ′(t) =

. �

So Definition 1 concerns the parametrization of the curve, not just its image set
γ(I) ⊂ R

n. Why? A PC is a smooth map γ : I → R
n, but it does not necessarily

represent a “smooth” curve! A RPC does, however.

Example 3 γ : R → R
2, γ(t) = (t2, t3) is a smooth map, hence a PC. But its image

set is not “smooth” – it has a cusp.

x

x

1

2

Note that γ is not a RPC:

γ′(t) =

Note also that the nasty point in γ(I) oc-
curs precisely where γ′(t) = 0, that is, at
the singular point of γ. �
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Definition 4 Given a PC γ : I → R
n, its velocity is γ′ : I → R

n, its acceleration
is γ′′ : I → R

n and its speed is |γ′| : I → [0,∞). �

Notes:

• |v| denotes the Euclidean norm of a vector v ∈ R
n, that is,

|v| =
√

v2
1 + v2

2 + · · · + v2
n ≥ 0.

• It’s important to distinguish between vector and scalar quantities.

Velocity is a ................ . Acceleration is a ................ . Speed is a ................ .

• We can rephrase definition 1 as follows:

PC γ is a RPC ⇐⇒ its velocity (or its speed) never vanishes

Example 5 (straight line) Simple but important.

x x

x

1 2

3 For any v ∈ R
n and x ∈ R

n one has the
PC

γ : R → R
n, γ(t) = x + vt.

Note that γ′(t) = v, constant, so γ is a
RPC unless v = 0.
Note also that the direction of the straight
line is determined solely by v. �

A RPC has a well-defined tangent line at each t0 ∈ I:

Definition 6 Let γ : I → R
n be a RPC. Then its tangent line at t0 ∈ I is the PC

γ̂t0 : R → R
n, γ̂t0(t) = γ(t0) + tγ′(t0).

Note that γ̂′t0(t) = 0 + γ′(t0) 6= 0 since γ is a RPC. Hence every tangent line γ̂t0 is a
RPC too. �

Example 7 Consider the PC γ : R → R
2, γ(t) = (t3 − t, t2 − 1).

(A) Is it a RPC?

(B) Are any of its tangent lines vertical?
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(A) Just check whether its velocity ever vanishes. Assume it does at time t. Then:

Hence γ is a RPC.

(B) Tangent line to γ at t0 ∈ R is

γ̂t0(t) =

The direction of the tangent line is given by its (constant) velocity vector

γ̂′t0(t) = (3t20 − 1, 2t0) = γ′(t0).

The tangent line is vertical if the horizontal component (the x1 component) of this
vector is 0. Hence γ̂t0 is vertical if and only if

so γ̂ 1
√

3

and γ̂− 1
√

3

are vertical.

Here’s a picture of γ.

x

x

1

2

x

x

1

2

Note that the curve intersects itself exactly once. A self-intersection point is one
where γ(t1) = γ(t2) but t1 6= t2, which implies, in this case,

t31 − t1 = t32 − t2, and t21 − 1 = t22 − 1

⇒ t21 = t22
⇒ t2 = −t1

⇒ t31 − t1 = −t31 + t1 = −(t31 − t1)

⇒ 0 = t31 − t1 = t1(t
2
1 − 1)

⇒ t1 = 0 or t1 = ±1

If t1 = 0 then t2 = −0 = t1, so this doesn’t give a self-intersection point. Likewise
t1 = 1 and t1 = −1 give the same self-intersection point, γ(1) = γ(−1) = (0, 0).

Another question: what is the length of the segment of γ from t = 0 to t = 1? �
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1.2 Arc length

x x

x

1 2

3

Given a RPC γ : I → R
n, what is the length of the curve segment from t = t0 to

t = t̂ say? Partition [t0, t̂] into N pieces [tn−1, tn], n = 1, 2, . . . , N (with tN = t̂) of

equal length δt =
bt−t0
N

. If N is large, then δt is small. The length of the straight line
segment from γ(tn−1) to γ(tn) is

δsn = |γ(tn) − γ(tn−1)| = |γ(tn−1 + δt) − γ(tn−1)| ≈ |γ′(tn−1)|δt.

So the total length of the piecewise straight line from γ(t0) to γ(t̂) is

sN =
N∑

n=1

δsn ≈
N∑

n=1

|γ′(tn−1)|δt.

In the limit N → ∞, δt → 0 and the piecewise straight line tends to the real curve
γ. So the total length of the curve segment is

s = lim
N→∞

sN =

∫ bt

t0

|γ′(t)| dt.

This motivates the following definition:

Definition 8 Let γ : I → R
n be a RPC. The arc length along γ from t = t0 to

t = t1 is

s =

∫ t1

t0

|γ′(t)| dt. �

More informally, distance travelled = integral of speed.
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Example 9 γ : (0,∞) → R
2, γ(t) = (t, 2

3
t

3

2 ).
Arc length from t = 3 to t = 15?

γ′(t) =

|γ′(t)| =

s =

�

WARNING! This example was cooked up to be easy. It’s usually impossible to
compute s in practice.

Example 7 (revisited) γ(t) = (t3 − t, t2 − 1). Arc length from t = 0 to t = 1?

x

x

1

2

s =

=

=

=

= ??? (1.36 to 2 d.p.) �

Note that we can use Definition 8 even if t1 < t0:

x x

x

1 2

3

s =

∫ t1

t0

|γ′(t)|︸ ︷︷ ︸ dt = −
∫ t0

t1

|γ′(t)| dt < 0

positive

⇒ signed arc length.

Once we’ve chosen a base point t0 ∈ I, at
every other time we can assign a unique
signed arc length.
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Definition 10 Let γ : I → R
n be a RPC. The arc length function based at t0 ∈ I

is

σt0 : I → R, σt0(t) =

∫ t

t0

|γ′(u)| du �

Example 9 (revisited) The arc length function based at t0 = 1 for γ(t) = (t, 2
3
t

3

2 )
is

σ1(t) =

=

Trick questions: (A) What is σ1(1)?
(B) What is σ′1(t)?

�

σt0(t) is very hard (usually impossible) to compute explicitly in practice. But the fact
that it exists is crucial to the theory of curves. We need to understand its properties.

Remark 11 The arc length function σt0 : I → R has the following properties:

(a) σt0(t0) =

∫ t0

t0

|γ′(q)| dq = 0.

(b) σt0 is a strictly increasing function:

σ′t0(t) =
d

dt

∫ t

t0

|γ′(a)| da = |γ′(t)| > 0

for all t ∈ I since γ is a RPC.

(c) It follows that σt0 is one-to-one by the Mean Value Theorem.

(d) Let J ⊆ R denote the range of σt0 . It’s another (possibly unbounded) open
interval. Given (c), there exists an inverse function to σt0 , let’s call it τt0 : J → I,
so that

τt0(σt0(t)) = t for all t ∈ I, and

σt0(τt0(s)) = s for all s ∈ J (♣)

I
σt0→ J

time
arc

length

t
←
τt0 s

Trick question: what is τt0(0)?
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(e) The inverse function τt0 is also strictly increasing. To see this, differentiate (♣)
with respect to s using the chain rule:

σ′t0(τt0(s))τ
′
t0
(s) = 1

⇒ τ ′t0(s) =
1

σ′t0(τt0(s))
=

1

|γ′(τt0(s))|
> 0 �

Example 12 γ : R → R
2 γ(t) = (a cos t, a sin t), where a > 0 is a constant.

σ0(t) =

τ0(s) =

Note both these functions are increasing functions from R to R. �

Example 9 (revisited) γ : (0,∞) → R
2 γ(t) = (t, 2

3
t

3

2 ). Recall

σ1 : (0,∞) → R σ1(t) =
2

3
((1 + t)

3

2 − 2
3

2 ).

What is τ1? Domain of τ1 = range of σ1. But since σ1 is increasing, this is just the
interval J = (a, b), where

a = lim
t→0

σ1(t) = −2

3
(2

3

2 − 1) and

b = lim
t→∞

σ1(t) = ∞.

To find a formula for τ1(s), we must solve s = σ1(t) to find t as a function of s:

s =
2

3

[
(1 + t)

3

2 − 2
3

2

]

⇒
(

3

2
s + 2

3

2

) 2

3

= 1 + t

⇒ τ1(s) =

(
3

2
s + 2

3

2

) 2

3

− 1.

[Check: τ1(0) = ]

What is τ ′1(s)?

τ ′1(s) =
1

σ′1(τ1(s))
=

1

|γ′(τ1(s))|
=

1√
1 + τ1(s)

=

(
3

2
s + 2

3

2

)− 1

3

�
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1.3 Reparametrization

x x

x

1 2

3

A reparametrization of a RPC γ : I → R
n is a redefinition of “time”:

β : J → R
n, β(u) = γ(h(u)) = (γ ◦ h)(u)

Example 13 Let γ : R → R
2 such that γ(t) = (t, et). Let h : (0,∞) → R such that

h(u) = log u. This gives the reparametrization

β : (0,∞) → R
2,

β(u) = γ(h(u)) =

Note that the image sets of γ and β are identical:
β((0,∞)) = γ(R). We’ve just changed the way we
label the points on the curve.

Note also that both γ and β are RPCs in this case:

x

x

1

2

γ′(t) = β ′(u) =

But we can’t allow h to be any function J → R if we want β to be a RPC. For
example, let h : R → R such that h(u) = sin u. Then

β(u) = γ(h(u)) =

β ′(u) =

so β ′(π
2
) = (0, 0), and β is not regular! This is an example of a bad redefinition of time.

We want to exclude things like this from our formal definition of reparametrization.
�

Definition 14 A reparametrization of a PC γ : I → R
n is a map β : J → R

n

defined by β(u) = γ(h(u)), where J is an open interval, and h : J → I is smooth,
surjective and increasing (that is h′(u) > 0 for all u ∈ J). �

Notes:
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• We require h to be smooth so that β is smooth (by the Chain Rule), hence a
PC.

• We require h to be surjective so that β(J) = γ(I). In other words, this ensures
that β covers all of γ, not just part of it.

• Since h is increasing, it is injective. Hence for each time t ∈ I there is one (h
surjective) and only one (h injective) corresponding new time u ∈ J .

Lemma 15 Any reparametrization of a RPC is also a RPC.

Proof: Let β(u) = γ(h(u)) where γ is a RPC. Then

β ′(u) = γ′(h(u))h′(u) = 0 ⇒
γ′(h(u)) = 0 (impossible since γ is regular)

or h′(u) = 0 (impossible since h is increasing).

Hence β is a RPC. �

Note that reparametrization preserves the direction and sense of the velocity vector,
but not its length:

new velocity = β ′(u) = h′(u)γ′(h(u)) = positive number × old velocity.

However:

Lemma 16 Reparametrization preserves arc length.

Proof: Let γ be a PC and s be the arc length along γ from γ(t0) to γ(t1). Let β = γ◦h
be a reparametrization of γ where h(u0) = t0 and h(u1) = t1. We must show that s
is also the arc length along β from β(u0) to β(u1). In fact

x x

x

1 2

3 s =

∫ t1

t0

|γ′(t)| dt Substitution: t = h(u), dt = h′(u)du

=

∫ h−1(t1)

h−1(t0)

|γ′(h(u))| h′(u)du

=

∫ u1

u0

|γ′(h(u))h′(u)| du since h′(u) > 0

=

∫ u1

u0

|β ′(u)| du

as required. �

Definition 17 A unit speed curve (USC) is a smooth map γ : I → R
n such that

|γ′(s)| = 1 for all s ∈ I �
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Notes:

• Clearly USC ⇒ RPC.

• It’s conventional to denote the “time” parameter of a unit speed curve by s
rather than t, because the parameter is signed arc length (up to a constant):

x x

x

1 2

3

σ =

∫ s1

s0

|γ′(s)|ds =

∫ s1

s0

1 ds = s1 − s0. (♣)

Unit speed curves may seem very special, but in fact they are, in a sense, completely
universal:

Theorem 18 Every RPC γ : I → R
n has a unit speed reparametrization (USR)

β : J → R
n. This USR is unique up to “time” translation. More precisely, if

δ : K → R
n is another USR of γ, then there exists a constant c ∈ R such that

β(s) = δ(s − c).

Proof:
(A) Existence:
Choose t0 ∈ I and let σt0 : I → J be the signed arc length function of γ based at
t0. Recall that there exists a smooth, well-defined inverse function τt0 : J → I which
is increasing (Remark 11(d) and (e)). So h = τt0 gives a reparametrization of γ,
according to Definition 14: β : J → R

n, β(s) = γ(τt0(s)). But

β ′(s) = γ′(τt0(s))τ
′
t0
(s) = γ′(τt0(s))

1

|γ′(τt0(s))|

by Remark 11(e). Hence |β ′(s)| = 1 for all s ∈ J , and β is a USC as required.

(B) Uniqueness:
Let δ : K → R

n be another USR of γ, σ be the arc length along γ from γ(t0) =
β(s0) = δ(s̃0) to γ(t) = β(s) = δ(s̃). By Lemma 16 and (♣),

x x

x

1 2

3

σ = s − s0 = s̃ − s̃0

⇒ s̃ = s − (s0 − s̃0)

Hence β(s) = δ(s̃) = δ(s − (s0 − s̃0)). �
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Example 19 Circle γ(t) = a(cos t, sin t), or radius a > 0. To find a USR of γ we
compute the arclength function and invert it, then use τ0 to reparametrize γ:

γ′(t) =

|γ′(t)| =

σ0(t) =

τ0(s) =

β(s) = γ(τ0(s)) =

x

x

1

2

�

Although Theorem 18 ensures a USR exists, we may not be able to construct it
explicitly:

Example 20 Ellipse γ(t) = (a cos t, sin t), a > 1.

γ′(t) =

|γ′(t)| =

σ0(t) =

τ0(s) =

β(s) = γ(τ0(s)) =

x

x

1

2

In this case we can’t write down a USR explicitly. �
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Summary

• A regularly parametrized curve (RPC) is a smooth map γ : I → R
n (where

I is an open interval) such that, for all t ∈ I, γ′(t) 6= 0.

• Given a RPC γ, its velocity is γ′, its speed is |γ′| and its acceleration is γ′′.

• The tangent line to γ at t0 ∈ I is

γ̂t0 : R → R
n, γ̂t0(t) = γ(t0) + γ′(t0)t.

• The arclength function based at t0 ∈ I is

σt0(t) =

∫ t

t0

|γ′(u)|du.

Geometrically, this is the arclength along γ from γ(t0) to γ(t) if t ≥ t0 (and
minus the arclength if t < t0).

• A reparamatrization of a curve γ : I → R
n is a curve γ ◦ h : J → R

n where
h : J → I is smooth, increasing and surjective. If γ is a RPC, so is every
reparametrization of γ.

• Arclength is unchanged by reparametrization.

• A unit speed curve (USC) is a curve with |γ′(t)| = 1 for all t.

• Every RPC has a reparametrization which is a USC. One can construct it, in
principle, by reparametrizing with h = σ−1

t0
.
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2 Curvature of a parametrized curve

2.1 Basic definition

In this section we will develop a measure of the curvature of a RPC.

x

x

1

2

What distinguishes a region of high curvature from one of low curvature?

High curvature: tangent lines change direction very rapidly
Low curvature: tangent lines change direction only slowly
No curvature (straight line): tangent lines don’t change direction at all

So we require a measure of the rate of change of direction of the curve’s tangent
lines. Recall that the tangent line at γ(t0) of a RPC γ is

γ̂t0(u) = γ(t0) + u γ′(t0)︸ ︷︷ ︸
determines

direction

Perhaps we can use
d

dt0
(γ′(t0)) = γ′′(t0) to measure the curvature of γ at t = t0? Not

quite: γ′′ tells us about rate of change of length of γ′ as well as rate of change of
direction.

Example 21 γ(t) = (log t, 2 log t + 1) is a straight line, and hence is not curved.

x

x

1

2

However

γ′(t) =

γ′′(t) =

which is not zero. �

But what if γ happens to be a unit speed curve, γ(s)? Then |γ′(s)| = 1 for all
s, so γ′′(s) does tell us only about the rate of change of the direction of the tangent
lines.

14



Definition 22 (a) Let γ : I → R
n be a USC. Then the curvature vector of γ is

k : I → R
n where

k(s) = γ′′(s).

Note that k is a vector quantity. We shall refer to the norm of k, |k| : I → [0,∞) as
the curvature of γ.

(b) If a RPC γ : I → R
n is not a USC, then Theorem 18 says that it has a unit

speed reparametrization β : J → R
n, β = γ ◦ h. In that case, we define the curvature

vector of γ at t = h(s) to be the curvature vector of β at s, as in part (a), that is,
β ′′(s). In other words, k : I → R

n such that

k = β ′′ ◦ h−1.

Note: To make sense, this definition should be independent of the choice of unit speed
reparametrization β of γ. It is. Recall, by Theorem 18, that any pair of USRs of γ
differ only by shifting the origin of the new time coordinate s. But such a shift has
no effect on the second (or indeed the first) derivative of β. �

Example 23 Helix γ : R → R
3, γ(s) =

1√
2
(cos s, sin s, s).

γ′(s) =

|γ′(s)| =

k(s) = γ′′(s) =

|k(s)| =

x x

x

1 2

3

. �

Example 24 Circle γ : R → R
2, γ(t) = (2 cos t, 2 sin t)

γ′(t) =

|γ′(t)| =
x

x

1

2

so not a USC. But we can find a USR of γ. How?

Arclength function: σ0(t) =

Inverse function: τ0(s) =

USR: β(s) = γ(τ0(s)) =

15



Now compute curvature vector of β:

β ′(s) =

β ′′(s) =

Change back to old parametrization, s = σ0(t) =

k(t) = β ′′(σ0(t)) =

�

In general this process is rather clumsy. In particular, it’s usually impossible to
write down β, the USR of γ, explicitly. Recall, for instance, Example 20, the ellipse
γ(t) = (a cos t, sin t).

So let’s calculate k once and for all for a general RPC γ, to obtain a more user-
friendly version of Definition 22. Two preliminary observations:

(A) Given two vectors u, v ∈ R
n, we define their scalar product u · v ∈ R by

u · v = u1v1 + u2v2 + · · ·unvn.

In particular, the norm of v may be rewritten

|v| =
√

v · v.

(B) Given two vector valued functions u, v : I → R
n, we have a product rule for

differention,
d

dt
(u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t).

In particular,

d

dt
|u(t)| =

d

dt
(u · u)

1

2 =
u · u′ + u′ · u

2(u · u)
1

2

=
u(t) · u′(t)

|u(t)| .

Let γ(t) be a RPC and β(s) = γ(h(s)) be a USR of γ. Then

β ′(s) =
d

ds
(γ(t)) =

dγ

dt

dt

ds
=

γ′(t)

ds/dt
.

But |β ′(s)| = 1, so ds/dt = |γ′(t)|, and

β ′(s) =
γ′(t)

|γ′(t)| .

Differentiating this equation w.r.t. s once again yields

β ′′(s) =
d

ds

(
γ′(t)

|γ′(t)|

)
=

d

dt

(
γ′(t)

|γ′(t)|

)
dt

ds

=

{
γ′′(t)

|γ′(t)| −
γ′(t)

|γ′(t)|2
d

dt
|γ′(t)|

}
1

|γ′(t)|

=

{
γ′′(t)

|γ′(t)| −
γ′(t)

|γ′(t)|2
(

γ′(t) · γ′′(t)
|γ′(t)|

)}
1

|γ′(t)|

=
1

|γ′(t)|2
{

γ′′(t) −
(

γ′(t) · γ′′(t)
|γ′(t)|2

)
γ′(t)

}
,
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where we have used observation (B) above. This leads us to

Definition 22 (*) The curvature vector of a RPC γ : I → R
n is k : I → R

n, where

k(t) =
1

|γ′(t)|2
{

γ′′(t) −
(

γ′(t) · γ′′(t)
|γ′(t)|2

)
γ′(t)

}
. �

Example 25 Parabola γ : R → R
2, γ(t) = (t, t2).

γ′(t) =

|γ′(t)|2 =

γ′′(t) =

γ′(t) · γ′′(t) =

k(t) =

x

x

1

2

�

Example 26 Ellipse γ : R → R
2, γ(t) = (2 cos t, sin t).

γ′(t) =

|γ′(t)|2 =

γ′′(t) =

γ′(t) · γ′′(t) =

k(t) =

|k(t)| =

x

x

1

2

�

Definition 22(*) is much easier to use than definition 22, but it’s not so memorable.
Can we improve it?

17



2.2 The unit tangent vector and normal projection

We start with a simple observation about the curvature vector:

Fact 27 The curvature vector k of a RPC γ is always orthogonal to its velocity,
k(t) · γ′(t) = 0. This follows directly from Definition 22(*):

k(t)·γ′(t) =
1

|γ′(t)|2
{

γ′′(t) · γ′(t) −
(

γ′(t) · γ′′(t)
|γ′(t)|2

)
γ′(t) · γ′(t)

}
= 0. �

Looking back at examples 23, 24, 26 one sees several illustrations of this:

Helix γ(s) = 1√
2
(cos s, sin s, s) γ′(s) = 1√

2
(− sin s, cos s, 1) k(s) = 1√

2
(− cos s,− sin s, 0)

Circle γ(t) = (2 cos t, 2 sin t) γ′(t) = (−2 sin t, 2 cos t) k(t) = 1
2
(− cos t,− sin t)

Ellipse γ(t) = (2 cos t, sin t) γ′(t) = (−2 sin t, cos t) k(t) = −2
(1+3 sin2 t)2

(cos t, 2 sin t)

We can use this fact to give a more memorable version of Definition 22(*). In prepa-
ration for this, we need:

Definition 28 Let γ : I → R
n be a RPC. Its unit tangent vector u : I → R

n is

u(t) =
γ′(t)

|γ′(t)| .

Note that u is well defined because γ is a RPC (so |γ′(t)| > 0 for all t). Note also
that |u(t)| = 1 for all t by construction.

Given any other vector valued function v : I → R
n, we define its normal projec-

tion, v⊥ : I → R
n by

v⊥(t) = v(t) − [v(t) · u(t)]u(t).

We can think of v⊥ as that part of v left over after we have subtracted off the
component of v in the direction of u. �

18



Example 29 γ : R → R
3, γ(t) = ( t2

2
, sin t, cos t). What are u and γ′′⊥?

γ′(t) =

|γ′(t)| =

u(t) =

γ′′(t) =

γ′′(t) · u(t) =

γ′′⊥(t) =

=

=

= �

The normal projection of the acceleration vector γ′′⊥ : I → R
n is of particular

interest, because it occurs in Definition 22(*):

k(t) =
1

|γ′(t)|2
{

γ′′(t) −
(

γ′(t)

|γ′(t)| · γ
′′(t)

)
γ′(t)

|γ′(t)|

}

=
1

|γ′(t)|2 {γ
′′(t) − [u(t) · γ′′(t)]u(t)} =

γ′′⊥(t)

|γ′(t)|2

Definition 22 (**) The curvature vector of a RPC γ : I → R
n is k : I → R

n,

k(t) =
γ′′⊥(t)

|γ′(t)|2 �

Example 29 (revisited) γ(t) = ( t2

2
, sin t, cos t) has curvature vector

k(t) =

�
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Summary

• The curvature vector of a RPC measures how fast the tangent lines to the curve
change direction.

• If γ is a unit speed curve, the curvature vector is k(s) = γ′′(s).

• In general

k(t) =
1

|γ′(t)|2
{

γ′′(t) − γ′′(t) · γ′(t)
|γ′(t)|2 γ′(t)

}
.

• The unit tangent vector along a curve γ : I → R
n is

u(t) =
γ′(t)

|γ′(t)| .

• The normal projection of v : I → R
n is

v⊥(t) = v(t) − [u(t) · v(t)]u(t).

• An alternative formula for the curvature vector is

k(t) =
γ′′⊥(t)

|γ′(t)|2 .
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3 Planar curves

3.1 Signed curvature of a planar curve

The theory of curvature can be developed further in the special case of planar curves,
that is, RPCs γ : I → R

2 in two dimensions. These are special because all the cur-
vature information associated with γ may be encoded in a single real-valued function
κ : I → R, called the signed curvature. How?

Recall that k in this case is a 2-vector, so it consists of a pair of real functions
k(t) = (k1(t), k2(t)) say. However, Fact 27 states that k is always orthogonal to the
unit tangent vector u. So in fact we already know the direction of k. The only extra
information we need to provide is the length of k, and its sense: whether it points to
the left or the right of u.

x

x

1

2

Definition 30 Let γ : I → R
2 be a RPC with unit tangent vector u (recall u =

γ′/|γ′|). The unit normal vector of γ is n : I → R
2,

n(t) = (−u2(t), u1(t)).

The signed curvature of γ is κ : I → R,

κ(t) = k(t) · n(t)

where k : I → R
2 is the curvature vector of γ, as in Definition 22(**). �

Notes:

(a) n is orthogonal to u (n(t)·u(t) = 0) and has unit length (|n|2 = u2
2+u2

1 = |u|2 = 1)
by construction. In fact, n is the vector obtained by rotating u 90◦ anticlockwise.

(b) Since both n and k are orthogonal to u, they must be parallel. In fact we can
re-interpret the above definition as follows: given that k(t) and n(t) are parallel,
we define κ(t) to be the constant of proportionality,

k(t) = κ(t)n(t).

It follows that |κ(t)| = |k(t)|. However, κ contains more information than the
(unsigned) curvature |k| — its sign tells us the “sense” of k.

(c) Recall that k = γ′′⊥/|γ′|2, so

κ(t) =
γ′′⊥(t) · n(t)

|γ′(t)|2 .
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However,
γ′′⊥ · n = (γ′′ − (γ′′ · u)u) · n = γ′′ · n,

so we can give a slightly more convenient definition of κ:

Definition 30 (*) Let γ : I → R
2 be a RPC, u = γ′/|γ′| be its unit tangent vector

and n = (−u2, u1) be its unit normal. Then its signed curvature κ : I → R is

κ(t) =
γ′′(t) · n(t)

|γ′(t)|2 . �

Example 31 A sinusoidal curve γ : R → R
2, γ(t) = (sin t, t)

γ′(t) =

|γ′(t)| =

u(t) =

n(t) =

γ′′(t) =

κ(t) =

x

x

1

2

. �

Note that

κ > 0 ⇒ k points in same sense as n ⇒ curve is turning left
κ < 0 ⇒ k points in opposite sense to n ⇒ curve is turning right

x

x

1

2
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Example 32 Looking at the parabola
γ(t) = (t, t2) it’s immediately clear that
κ(t) is always . Let’s check:

x

x

1

2

γ′(t) =

u(t) =

n(t) =

γ′′(t) =

κ(t) =

Note that this observation depends crucially on the orientation of the curve, that
is, the direction in which it is traversed. For example, for both of the parabolae below,
the signed curvature is always :

γ(t) = (−t, t2) γ(t) = (t2, t)

x

x

1

2

x

x

1

2

. �

Points on a curve where the signed curvature changes sign have a special name:

Definition 33 Let γ : I → R
2 be a RPC and κ : I → R be its signed curvature. If

there exists a time t∗ ∈ I such that κ(t∗) = 0 and κ changes sign at t = t∗, then γ(t∗)
is an inflexion point of γ. �

Example 31 (revisited) What are the inflexion points of the sinusoidal curve γ(t) =
(sin t, t)? Recall that its signed curvature function is

κ(t) =
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So κ(t) = 0 if and only if t = Nπ,
where N ∈ Z. Further, the sign of κ(t)
changes at each such time. Hence for all
N ∈ Z,

γ(Nπ) = (0, Nπ)

is an inflexion point. x

x

1

2

WARNING!
κ(t∗) = 0 does NOT imply that γ(t∗) is an inflexion point!

κ must CHANGE SIGN at t = t∗ too!

Counterexample 34 The quartic curve γ : R → R
2, γ(t) = (t, t4) has κ(0) = 0.

However, it clearly has no inflexion points (κ(t) ≥ 0, since the curve never turns
right),

γ′(t) =

γ′′(t) =

γ′′(0) =

κ(0) =
γ′′(0) · n(0)

|γ′(0)|2 = 0

x

x

1

2

Exercise: show that

κ(t) =
12t2

(1 + 16t6)
3

2

. �
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3.2 Planar curves of prescribed curvature

In this section we will consider only planar unit speed curves (PUSCs) γ(s) (|γ′(s)| = 1
for all s). Note this entails no loss of generality by Theorem 18.

So far, given a PUSC γ(s) we can construct its signed curvature κ(s). Can we
go the other way? That is, given a function κ(s), can we reconstruct the PUSC
γ(s) whose curvature is κ? Yes, provided we also specify an initial position γ(0) and
tangent vector γ′(0).

How? Note |γ′(s)| = 1 so each velocity vector is determined by just its direction.
That is, there exists smooth θ : I → R such that

γ′(s) = (cos θ(s), sin θ(s)) (A).

Note that u(s) = γ′(s) and hence the unit normal vector is

n(s) = (− sin θ(s), cos θ(s)).

Now, for a USC, curvature k(s) = γ′′(s) = (− sin θ(s), cos θ(s))θ′(s), and hence the
signed curvature is

κ(s) = n(s) · k(s) = θ′(s) (B).

We may collect (A), (B) into a coupled system of 3 nonlinear ordinary differential
equations (ODEs):

(∗)





dθ

ds
= κ(s) (1)

dγ1

ds
= cos θ (2)

dγ2

ds
= sin θ (3)

So any PUSC of curvature κ is a solution of system (*), and vice versa. Given a
prescribed κ(s), we can solve (*) for the curve γ(s).

Theorem 35 Given any smooth κ : I → R, 0 ∈ I, and constants θ0 ∈ R and
γ0 ∈ R

2, there exists a unique USC γ : I → R
2 with γ(0) = γ0, γ′(0) = (cos θ0, sin θ0)

and signed curvature κ.

Proof: Must prove existence of a unique global solution (θ(s), γ1(s), γ2(s)) of the initial
value problem [IVP] (θ(0), γ1(0), γ2(0)) = (θ0, a, b) for system (*) [where γ0 = (a, b)].

In fact, (*) is separable. First consider IVP (1):

dθ

ds
= κ(s), θ(0) = θ0.

This has solution

θ(s) = f(s) := θ0 +

∫ s

0

κ(α)dα.
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[Note that f ′(s) = κ(s) by the Fundamental Theorem of Calculus, and f(0) = θ0, so
θ = f is a solution with the right initial data.]
Unique? Yes, by the Mean Value Theorem (MVT).
[Assume not unique. Then there exists another solution θ(s) = g(s) with g(0) = θ0

but g 6= f , that is, there exists s0 ∈ I such that g(s0) 6= f(s0). Consider the function
F (s) = f(s)− g(s). Clearly F (0) = 0, F (s0) 6= 0 and F is differentiable on I. Hence,
by MVT, there exists s∗ between 0 and s0 such that

F ′(s∗) =
F (s0) − F (0)

s0 − 0
=

F (s0)

s0
6= 0.

But f and g both solve (1), so F ′(s) = κ(s) − κ(s) = 0 for all s, a contradiction.]
Now substitute this unique solution (θ = f) into IVP (2):

dγ1

ds
= cos f(s) γ1(0) = a.

This has unique solution

γ1(s) = a +

∫ s

0

cos f(α) dα

by an identical argument. Similarly, substituting θ = f into IVP (3),

dγ2

ds
= sin f(s) γ2(0) = b,

one has the unique solution

γ2(s) = b +

∫ s

0

sin f(α) dα. �

Note that Theorem 34 doesn’t just prove existence and uniqueness of the curve
γ(s), it also gives a formula for it:

γ(s) = γ0 + (

∫ s

0

cos θ(α) dα,

∫ s

0

sin θ(α) dα), where θ(α) = θ0 +

∫ α

0

κ(β) dβ. (C)

Example 36 Curves of constant curvature: κ(s) = κ0 6= 0, constant. Let’s always
choose γ(0) = (0, 0), θ(0) = 0 henceforth. Then formula (C) implies

θ(α) =

⇒ γ1(s) =

γ2(s) =

⇒ γ(s) =
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This curve is a circle of radius 1/|κ0| centred on (0, 1/κ0). Question: what happens
when κ0 = 0? We can (a) go back and use formula (C) with κ(β) ≡ 0 or (b) take the
limit as κ0 → 0 of the solution above (and appeal to continuity properties of solutions
of ODEs).

Either way we find that

κ0 = 0 ⇒ γ(s) = (s, 0),

that is, the solution degenerates to a hor-
izontal straight line.

-1

-0.5

0

0.5

1

-0.6-0.4-0.2 0 0.2 0.4 0.6

Example 37 κ(s) =
1

1 + s2
. Note κ(s) > 0 for all s, so curve always turns left and

has no inflexion points. Applying formula (C) again:

θ(α) =

⇒ γ1(s) =

γ2(s) =

⇒ γ(s) =

In fact, using the reparametrization s = τ(t) = sinh t, this becomes

γ̃(t) = (γ ◦ τ)(t) = (t, cosh t − 1),

the graph of the cosh function shifted down one unit.�

It’s actually quite difficult to cook up curvature functions κ(s) for which the inte-
grals in formula (C) are explicitly calculable. Even a seemingly simple choice such as
κ(s) = s turns out to be intractable:

θ(α) =

∫ α

0

β dβ =
1

2
α2

γ1(s) =

∫ s

0

cos
α2

2
dα =???

γ2(s) =

∫ s

0

sin
α2

2
dα =???

What can we say about the geometry of this curve?

Reminder: A function f : I → R is

even if f(−t) = f(t) for all t ∈ I
odd if f(−t) = −f(t) for all t ∈ I.
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Proposition 38 Let γ(s) be the USC of curvature κ(s) with γ(0) = 0, γ′(0) = (1, 0).

(a) If κ is even, γ is symmetric under reflexion in the x2 axis.

(b) If κ is odd, γ is symmetric under rotation by 180 degrees about (0, 0).

Proof: From formula (C) one sees that

θ(−α) =

where ξ := −β. Hence κ even implies θ odd, while κ odd implies θ even. Similarly,

γ1(−s) =

so if κ is odd or even (meaning θ is even or odd) then γ1 is odd. Further,

γ2(−s) =

so if κ is even (θ odd) γ2 is even while if κ is odd (θ even) γ2 is odd. Summarizing:

κ even ⇒ γ(−s) ≡
κ odd ⇒ γ(−s) ≡

and hence γ has the symmetry claimed. �

Applying Proposition 38 to κ(s) = s, an odd function, we see that the correspond-
ing curve γ must have rotational symmetry about the origin. Also, γ has one and only
one inflexion point: γ(0) = (0, 0). For s > 0, κ > 0 meaning the curve always turns
leftwards, and as s grows this turning gets tighter and tighter (|κ| is unbounded).
The behaviour for s < 0 is determined by that for s > 0 by the symmetry property.

To get an idea of the specific shape of the curve γ, we can solve system (*) approx-
imately using an ODE solver package, in Maple for example. The following Maple
code is adapted from Differential Geometry and its Applications by J. Oprea. Given a
function κ and an interval I = (s1, s2) it computes the curve γ : I → R

2 of curvature
κ (γ(0) = 0, γ′(0) = (1, 0)) and then plots it.

recreate:=proc(kappa,s1,s2)

local sys,gamma1,gamma2,theta,IC,soln:

with(plots):

sys:={diff(theta(s),s)=kappa(s),

diff(gamma1(s),s)=cos(theta(s)),

diff(gamma2(s),s)=sin(theta(s))}:

IC:={theta(0)=0,gamma1(0)=0,gamma2(0)=0}:

soln:=dsolve(sys union IC,{theta(s),gamma1(s),gamma2(s)},type=numeric):

odeplot(soln,[gamma1(s),gamma2(s)],s1..s2,numpoints=400,scaling=constrained);

end:

To apply this to our case (κ(s) = s) one defines

kappa:=s->s;

28



and then executes (for example)

recreate(kappa,-8,8);

The result is:

-2

-1

0

1

2

-2 -1 0 1 2

Note the curve has the predicted turning behaviour and symmetry. It is now straight-
forward to turn the program loose on just about any curvature function. The results
can be quite entertaining.

Example 39 Let κ(s) = s2 sin s (execute kappa:s->s^2*sin(s);). Note that κ
is again odd, so the corresponding curve must have rotational symmetry about the
origin. Note also that γ(s) has infinitely many inflexion points, since κ changes sign
at every s = mπ, where m ∈ Z. Executing recreate(kappa,-15,15); one obtains
(below left):

-1

-0.5

0

0.5

1

-2 -1 0 1 2

0

0.5

1

1.5

2

2.5

3

-2 -1 0 1 2

Compare with κ(s) = s sin s, an even function:

kappa:=s->s*sin(s);

recreate(kappa,-10,10);

The corresponding curve is depicted above, right. Note the reflexion symmetry in the
x2 axis. �

Example 40 Let κ(s) = s2−1 (execute kappa:s->s^2-1;). Note that κ is ,
so the corresponding curve must have symmetry. Note also that γ(s)
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has exactly inflexion points, since κ changes sign at s = . Executing
recreate(kappa,6,6);

one obtains (below right):

-2

-1

0

1

2

-2 -1 0 1 2

It’s not hard to identify the inflexion points on the curve above.

Trick question: What’s the arc length along the curve from one inflexion point to
the next?
Answer: �

Go forth and experiment

You are encouraged to experiment in Maple with the procedure recreate. The value
of this is that it will help develop your intuition about the geometric relationship
between the function κ and the corresponding curve γ. Of course, in the final exam
for this module, Maple will not be available to you. Hopefully the intuition you’ve
developed will. In particular, relying heavily on recreate to complete Problem Sheet
2 would be a mistake. You have been warned...
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3.3 The evolute of a planar curve

Given one planar curve, there are a number of geometrically interesting ways to
generate new curves from it. One of these is the evolute of the curve. Throughout
this section, γ : I → R

2 will denote a planar RPC, not necessarily unit speed,
u : I → R

2 will denote its unit tangent vector, n : I → R
2 its unit normal vector and

κ : I → R its signed curvature. First we need:

Definition 41 Given t0 ∈ I, the centre of curvature of γ at t = t0 is

c(t0) = γ(t0) +
1

κ(t0)
n(t0).

Note this definition only makes sense if κ(t0) 6= 0. �

Example 42 We saw in example 32 that
the parabola γ(t) = (t, t2) has, at t = 0,

n(0) =

κ(0) =

⇒ c(0) =

x

x

1

2

. �

We can give a nice geometric interpretation of the centre of curvature in terms of the
behaviour of the normal lines to the curve γ.

Theorem 43 For t0 ∈ I fixed and t ∈ I variable, consider the normal lines to γ
through γ(t0) and γ(t). If κ(t0) 6= 0 and |t − t0| is sufficiently small then these
normals intersect at some point α(t) ∈ R

2. Then

lim
t→t0

α(t) = c(t0),

the centre of curvature of γ at t0. .

x

x

1

2

To prove this, we’ll need a useful lemma:

Lemma 44 For all t ∈ I,

(a) n′(t) = −κ(t)γ′(t), (b) u′(t) = κ(t)|γ′(t)|n(t).

Proof: Since [u(t), n(t)] is an orthonormal pair of vectors, they form a (t dependent)
basis for R

2. So we can always express any R
2 valued function as a linear combination

of u(t) and n(t). Applying this idea to n′(t), we see that there must exist smooth
functions λ : I → R and µ : I → R such that

n′(t) = λ(t)u(t) + µ(t)n(t).
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Taking the scalar product of both sides of this equation with u(t) gives

u · n′ = λ u · u︸︷︷︸ +µ u · n︸︷︷︸ = λ

1 0 (orthonormality)

Now
u · n = 0 ⇒ u′ · n + u · n′ = 0 ⇒ u · n′ = −n · u′.

Hence

λ = −n · d

dt

(
γ′

|γ′|

)
= −n ·

(
γ′′

|γ′| − γ′
d|γ′|−1

dt

)
= −n · γ′′

|γ′| = −κ|γ′|

Similarly,
n · n′ = λ n · u︸︷︷︸ +µ n · n︸︷︷︸ = µ

0 1 (orthonormality)

and
n · n = 1 ⇒ n′ · n + n · n′ = 0 ⇒ n · n′ = 0

so it follows that µ(t) = 0. Hence,

n′(t) = −κ(t)|γ′(t)|u(t) = −κ(t)γ′(t)

which proves part (a).
Part (b) follows from similar reasoning, so we shall be more brief.

u′ = (u · u′)u + (n · u′)n = 0u − (u · n′)n = κ|γ′|n
by part (a). �

We may now give a

Proof of Theorem 43: We may give the
normals through γ(t), γ(t0) the (unit
speed) parametrizations (with parameters
s and s0 respectively)

γ(t) + sn(t), γ(t0) + s0n(t0).

x

x

1

2

Hence, their intersection point, which will depend on t, is

α(t) = γ(t) + s(t)n(t) = γ(t0) + s0(t)n(t0), ♣
where s(t) and s0(t) are two unknown functions of t. Differentiating (♣) with respect
to t and taking the limit t → t0, we find that

γ′(t0) + s′(t0)n(t0) + s(t0)n
′(t0) = s′0(t0)n(t0). ♠

Taking the scalar product of (♠) with u(t0) yields

|γ′(t0)| + 0 + s(t0)n
′(t0) · u(t0) = 0

⇒ |γ′(t0)| − s(t0)κ(t0)γ
′(t0) · u(t0) = 0

⇒ s(t0) =
1

κ(t0)
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by Lemma 44. Hence

lim
t→t0

α(t) = γ(t0) + s(t0)n(t0) = γ(t0) +
1

κ(t0)
n(t0)

as was to be proved. �

Definition 45 The evolute of the planar curve γ is Eγ : I → R
2, defined such that

Eγ(t) = γ(t) +
1

κ(t)
n(t),

in other words, it is the curve of centres of curvature of the curve γ. �

Notes:

• Eγ is only well defined (on the whole of I) provided γ has nonvanishing signed
curvature κ. In particular, γ must have no inflexion points, or else Eγ “escapes
to infinity.”

• Even if κ(t) 6= 0 for all t ∈ I, the evolute may not be a RPC, as we will now
show.

E ′γ(t) = γ′(t) − κ′(t)

κ(t)2
n(t) +

1

κ(t)
n′(t)

= γ′(t) − κ′(t)

κ(t)2
n(t) − 1

κ(t)
κ(t)γ′(t)

= − κ′(t)

κ(t)2
n(t) ♦

by Lemma 44. So E ′γ(t) = (0, 0) if and only if κ′(t) = 0. Hence, if κ has critical
points, then Eγ is not regular. At such points, Eγ may exhibit “cusps”.

Example 46 (ellipse) γ(t) = (a cos t, sin t)

γ′(t) =

n(t) =

γ′′(t) =

κ(t) =

Eγ(t) =

=

=
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a = 2 a = 1.3 a = 1.1
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-1 -0.5 0 0.5 1

In the limit a → 1, the ellipse degenerates to a circle, and its evolute collapses to a
single point (0, 0). �

We can relate the geometric quantities associated with Eγ to those of γ.

Theorem 47 Let uE, nE, σE
t0

denote the unit tangent, unit normal and arclength
function of Eγ respectively. If κ′(t) < 0 for all t ∈ I, then

(a) uE(t) = n(t), (b) nE(t) = −u(t), (c) σE
t0

(t) =
1

κ(t)
− 1

κ(t0)
.

Proof: (a) From (♦), we know that

E ′γ(t) = − κ′(t)

κ(t)2
n(t)

so if κ′(t) < 0 then

|E ′γ(t)| = − κ′(t)

κ(t)2
.

Hence uE = E ′γ/|E ′γ| = n.

(b) nE = (−uE
2 , uE

1 ) = (−n2, n1) = (−u1,−u2) by part (a).
(c) Arclength is the integral of speed, which by part (a) is

σE
t0

(t) = −
∫ t

t0

κ′(q)

κ(q)2
dq =

∫ t

t0

(
1

κ

)′
(q)dq =

1

κ(t)
− 1

κ(t0)

which was to be proved. �
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3.4 Involutes and parallels of a planar curve

Once again, let γ : I → R
2 be a RPC, and let u, n, κ denote its unit tangent, unit

normal and signed curvature respectively. In this section we describe a different way
to generate new planar curves from γ which is in some sense the inverse of taking the
evolute.

Imagine we have a piece of string
wrapped along the curve from γ(t0) to
γ(t1), and that the end γ(t1) is fixed.
Imagine now that we peel the free end of
the string away from γ, always keeping
the string taut. Then the released sec-
tion of string is a straight line tangent to
γ at some point γ(t), t0 < t < t1. The
length of the released section is the ar-
clength along γ from t0 to t, that is

σt0(t) =

∫ t

t0

|γ′(q)|dq.

So when the contact point between string
and curve is γ(t), the free end of the string

is located at

γ(t) − σt0(t)u(t).

x

x

1

2

Definition 48 The involute of γ starting at t0 ∈ I is Iγ : I → R
2, defined by

Iγ(t) = γ(t) − σt0(t)u(t).

Note that if γ(t) is a USC then σt0(t) = t − t0 so

Iγ(t) = γ(t) − (t − t0)γ
′(t).

[Question: why don’t we denote the “time” parameter s in this case? If γ is a USC,
does it follow that Iγ is a USC too?] �

Example 49 A circle γ(t) = (cos t, sin t).
This is a USC, so the involute of γ based
at t = 0 is

Iγ(t) =

=

=

. �
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Note that Iγ has a cusp at t = 0 in this case. Accident? No: Iγ is never a RPC.

Iγ(t) = γ(t) − σt0(t)u(t)

⇒ I ′γ(t) =

=

= (♠)

where we have used Lemma 44. Hence I ′γ(t) = (0, 0) if and only if σt0(t) = 0 or
κ(t) = 0 (since γ is a RPC, |γ′(t)| is never 0). So I ′γ(t) = (0, 0) when t = t0 and
whenever κ(t) = 0 (for example, where the contact point is an inflexion point of γ).

A useful analogy:

function f(x)
derivative ւ ց integral

f ′(x)
∫ x

x0
f(q)dq

curve γ
evolute ւ ց involute

Eγ Iγ

Fundamental Theorem of Calculus: derivative of integral is the original function f .

Theorem 50 Let Iγ be an involute of γ. Then the evolute EI of Iγ is γ.

Proof: The strategy is simple: construct the evolute of Iγ , the involute of γ starting
at t0. To do this, we will need the signed curvature κI and the unit normal nI of Iγ .

By Theorem 18 we may assume without loss of generality that γ is a USC. Then

I ′γ(t) = −(t − t0)κ(t)n(t) = −(t − t0)k(t) (♣)

by equation (♠). Hence Iγ has unit tangent

uI =
I ′γ
|I ′γ|

= − (t − t0)κ

|t − t0||κ|
n

and so

nI = (−uI
2, u

I
1) =

(t − t0)κ

|t − t0||κ|
u.

Differentiating (♣) gives
I ′′γ = −k − (t − t0)k

′,

whence the signed curvature of Iγ is

κI =
I ′′γ · nI

|I ′γ|2
= − (t − t0)κ

|t − t0|3|κ|3
[k + (t − t0)k

′] · u

= − κ

|t − t0||κ|3
k′ · u
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since k · u = 0 by Fact 27. But

k · u = 0 ⇒ k′ · u + k · u′ = 0 ⇒ k′ · u = −k · u′ = −|k|2 = −κ2

since γ is a USC (so u = γ′ and u′ = γ′′ = k). Hence

κI =
κ

|κ|
1

|t − t0|
.

So

EI(t) = Iγ(t) +
1

κI(t)
nI(t)

= γ − (t − t0)u +
|t − t0||κ|

κ

(t − t0)κ

|t − t0||κ|
u = γ(t)

as was to be proved. �

So taking the evolute “undoes” the involute, just as differentiation “undoes” integra-
tion. What about the converse? If we first differentiate f(x), then take a definite
integral of f ′, we don’t necessarily get the same function f(x) back again – it could
be shifted by a constant c. For example:

f(x) = cos x ⇒ f ′(x) = − sin x

⇒
∫ x

0

f ′(q)dq = −
∫ x

0

sin q dq = cos x − 1 = f(x) − 1

Thinking of the graphs of the functions, we could say that integrating the derivative
in general gives a shifted, or “parallel”, function. An analogous statement holds for
curves too, i.e. if we take an involute of the evolute of γ, the result is a curve “parallel”
to γ, in the following precise sense:

Definition 51 Given a RPC γ : I → R
2 and a constant λ ∈ R, the curve γλ : I → R

2

defined by
γλ(t) = γ(t) + λn(t)

is a parallel curve to γ. �

Note the similarity between γλ and the evolute of γ,

Eγ(t) = γ(t) + κ(t)−1n(t).

Under what circumstances is γλ regular?

Lemma 52 The parallel γλ to γ is a RPC if and only if κ(t) 6= 1/λ for all t ∈ I. In
other words, λ must lie outside the range of the function 1/κ.

Proof:
γ′λ(t) = γ′(t) + λn′(t) = γ′(t) − λκ(t)γ′(t)

by Lemma 44. Hence γ′λ(t) = (0, 0) if and only if κ(t) = 1/λ. �
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Example 53 Let’s construct the general parallel curve to the parabola γ(t) = (t, t2):

γ′(t) =

n(t) =

γλ(t) =

=

0

1

2

3

4

-2 -1 0 1 2

Which values of the constant λ give regular parallels? Example 32 ⇒

κ(t) =
2

(1 + 4t2)
3

2

.

Hence 1/κ(t) has range [1
2
,∞), so γλ is regular if and only if λ < 1

2
.

�

Theorem 54 Let γ have evolute Eγ. Then every involute IE of Eγ is a parallel curve
to γ.

Proof: We simply construct the involute of Eγ starting at t0 ∈ I. To do this we will
need the arclength function σE

t0
(t) and the unit tangent uE(t) of Eγ. We shall assume

that κ′(t) < 0 (a similar argument works for the case κ′(t) > 0). Recall that in this
case,

σt0(t) =
1

κ(t)
− 1

κ(t0)
and uE(t) = n(t)

by Theorem 47, parts (c) and (a). Hence,

IE(t) = Eγ(t) − σE(t)uE(t)

= γ(t) +
1

κ(t)
n(t) −

(
1

κ(t)
− 1

κ(t0)

)
n(t)

= γ(t) − 1

κ(t0)
n(t).

But this is just γλ where λ = 1/κ(t0). �
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Summary

• For a planar curve γ : I → R
2 we can define the unit normal vector

n(t) = (−u2(t), u1(t)),

where u is the unit tangent vector.

• Since the curvature vector is parallel to n, there is a scalar function κ : I → R

called the signed curvature, such that

k(t) = κ(t)n(t).

• A convenient formula for κ(t) is

κ(t) =
γ′′(t) · n(t)

|γ′(t)|2 .

• If κ(t) > 0, the curve is turning to the left. If κ(t) < 0, the curve is turning to
the right.

• Given a function κ(s), there is a planar USC γ(s) whose signed curvature is κ(s).
This curve is unique up to rigid motions. Symmetries of κ imply symmetries of
γ.

• The curve obtained from γ by tracing out the locus of its centres of curvature is
called the evolute of γ. Explicitly

Eγ(t) = γ(t) +
1

κ(t)
n(t).

• The involute of γ based at t0 ∈ I is

Iγ(t) = γ(t) − σt0(t)u(t).

• A parallel to γ is a curve

γλ(t) = γ(t) + λn(t)

where λ ∈ R is a constant.

• The evolute of an involute of γ is γ. Every involute of the evolute of γ is a
parallel to γ.

• The regularity properties of evolutes and parallels can be analyzed in terms of
the curvature properties of γ.
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4 Curves in R
3 and the Frenet frame

4.1 The Frenet frame

Planar curves (γ : I → R
2) are special because given one vector in R

2, the unit
tangent vector u = γ′/|γ′|) say, one can uniquely determine an orthogonal one by
rotating 90◦ anticlockwise, the unit normal n in this case.
Curves in R

3 (γ : I → R
3) are also special: given an ordered pair of vectors in R

3,
e.g. u = γ′/|γ′|, k = γ′′⊥/|γ′|2, one can uniquely determine a third orthogonal to both
by using the vector product (u × k).

Reminder 55 Given vectors u = (u1, u2, u3), v = (v1, v2, v3) ∈ R
3, their vector

product is
u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

It has the following properties:

(a) v × u = −u × v

(b) For all λ, µ ∈ R, (λu + µv) × w = λ(u × w) + µ(v × w)

(c) If u is parallel to v (i.e. u = λv) then u × v = 0 [follows from (a), (b)]

(d) |u × v|2 = |u|2|v|2 − (u · v)2.

(e) u · (v × w) = w · (u × v) = v · (w × u)

(f) u × v is orthogonal to both u and v [follows from (e)] �

Definition 56 Let γ : I → R
3 be a RPC whose curvature never vanishes (i.e. for all

t ∈ I, |k(t)| 6= 0). Then in addition to the unit tangent vector

u(t) :=
γ′(t)

|γ′(t)|
one defines the principal unit normal vector

n(t) :=
k(t)

|k(t)|
and the binormal vector

b(t) := u(t) × n(t).

The ordered triplet [u(t), n(t), b(t)] is called the Frenet frame of the curve. γ �

Note: we call n(t) the principal unit normal to distinguish it from the infinitely
many other unit vectors lying in the plane orthogonal to u(t). This is only possible
if k(t) 6= 0.

Lemma 57 The Frenet frame is orthonormal (the vectors u, n, b are mutually orthog-
onal and each have unit length).
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Proof: |u(t)| = 1 and |n(t)| = 1 for all t by definition. Also n(t) is parallel to k(t)
which is orthogonal to u(t) by Fact 27. It remains to show that (i) |b(t)| = 1 and (ii)
b(t) is orthogonal to u(t) and n(t). But (i) follows from Reminder 55(d),

|b|2 = |u × n|2 = |u|2|n|2 − (u · n)2 = 1 × 1 − 02 = 1,

and (ii) follows directly from Reminder 55(f). �

So given any regularly parametrized curve of nonvanishing curvature (RPCNVC)
γ : I → R

3, the Frenet frame [u, n, b] forms an orthonormal basis for the vector space
R

3.

Example 58 Construct the Frenet frame at t = 0 for the curve γ : R → R
3,

γ(t) = ( t2

2
, t3

3
, t). Note: this is only possible provided k(0) 6= 0!

γ′(t) =

γ′′(t) =

γ′(0) =

γ′′(0) =

γ′′⊥(0) =

k(0) =
γ′′⊥(0)

|γ′(0)|2 =

0

0.5

1

1.5

2

2.5

-3

-2

-1

0

1

2

3

-2

-1

0

1

2

which is nonzero, so the Frenet frame is well-defined. So

u(0) =
γ′(0)

|γ′(0)| =

n(0) =
k(0)

|k(0)| =

b(0) = u(0) × n(0)

=

�
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4.2 Torsion of a unit speed curve in R
3

Our aim is to describe the geometry of curves in R
3 by analysing the time dependence

of the Frenet frame. This process simplifies greatly if the curve under consideration is
a unit speed curve, so henceforth, we will consider only USCs. Note that this entails
no loss of generality by Theorem 18: every RPC has a unit speed reparametrization,
unique up to time translation.

The construction of the Frenet frame for a USC γ : I → R
3 simplifies somewhat

because γ′ is already a unit vector, and the curvature k = γ′′. Hence,

u(s) = γ′(s), n(s) =
u′(s)

|u′(s)| , b(s) = u(s) × n(s).

It is conventional in the context of curves in R
3 to denote the scalar curvature by

κ(s) rather than |k(s)|. This should not be confused with the signed curvature of a
curve in R

2. Here κ(s) just means the length of the curvature vector k(s), which of
course is never negative. Noting that k(s) = u′(s) for a USC, we may re-write the
definition of the principal unit normal as

u′(s) = κ(s)n(s) (1)

Since the Frenet frame [u(s), n(s), b(s)] spans R
3 we should be able to find similar

formulae for n′(s) and b′(s). The coefficient functions we extract should tell us about
the geometry of γ, just as κ does. We start with b′(s). Since it’s a 3-vector, there
must exist smooth functions λ, µ, ν : I → R such that

b′(s) = λ(s)u(s) + µ(s)n(s) + ν(s)b(s)

Taking the scalar product of both sides with b(s) gives:

b · b′ = λ b · u︸︷︷︸ +µ b · n︸︷︷︸ +ν b · b︸︷︷︸ = ν

0 0 1 (orthonormality)

But
b · b = 1 ⇒ b′ · b + b · b′ = 0 ⇒ b′ · b = 0

and hence ν = 0. Similarly,

u · b′ = λ u · u︸︷︷︸ +µ u · n︸︷︷︸ +ν u · b︸︷︷︸ = λ

1 0 0 (orthonormality)

But

u · b = 0 ⇒ u′ · b + u · b′ = 0 ⇒ u · b′ = −u′ · b
= −κ n · b (by eqn. (1))

= 0.

Hence λ = 0 also. It follows that

b′(s) = µ(s)n(s)

for some function µ. We call −µ(s) the torsion of the curve.

42



Definition 59 Let γ : I → R
3 be a USCNVC. The torsion of the curve is that

function τ : I → R defined by the equation

b′(s) = −τ(s)n(s) (2)

Alternatively, τ(s) = −b′(s) · n(s). �

Example 60 Construct the Frenet frame and torsion for the helix γ : R → R
3,

γ(s) = (cos s√
2
, sin s√

2
, s√

2
).

First check it’s a USCNVC:

γ′(s) =

|γ′(s)| =

k(s) = γ′′(s) =

OK. Now compute [u, n, b]:

u(s) = γ′(s) =

n(s) =
u′(s)

|u′(s)| =

b(s) = u(s) × n(s) =

To find τ(s), we compute b′(s) and com-
pare with n(s):

b′(s) =

τ(s) = �
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What is the geometric meaning of torsion? Recall that the curvature κ = |u′| measures
the rate of change of the direction of the tangent line to the curve. Torsion has a
similar interpretation, but in terms of planes rather than lines.

At the point γ(s0) we define the osculating plane of the curve to be that plane
through γ(s0) spanned by the orthonormal pair [u(s0), n(s0)], or equivalently, by the
velocity γ′(s0) and acceleration γ′′(s0) of the curve. The orientation of this plane
is uniquely determined by any vector normal to it, for example the binormal vector
b(s0) = u(s0) × n(s0). Consider the Taylor expansion of the curve γ(s) based at the
time s0:

γ(s) = γ(s0) + γ′(s0)(s − s0) +
1

2
γ′′(s0)(s − s0)

2

︸ ︷︷ ︸
stays in osculating plane

+
1

6
γ′′′(s0)(s − s0)

3 + · · ·
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The failure of γ(s) to stay in the osculating plane is controlled (locally) by γ′′′(s0).
The osculating plane divides R

3 in half: we can classify any vector v not in the
plane as positive if v · b(s0) > 0 and negative if v · b(s0) > 0. Thinking of the
osculating plane as horizontal, with b(s0) pointing “up”, positive vectors point on
the up side of the plane, negative vectors on the downside. So if γ′′′(s0) · b(s0) > 0,
the curve punctures the osculating plane upwards as it passes through γ(s0), while if
γ′′′(s0) · b(s0) < 0, it punctures the osculating plane downwards. What does this have
to do with torsion?

Proposition 61 Let γ : I → R
3 be a USCNVC. Then τ(s) = (γ′′′(s) · b(s))/κ(s).

Proof: Recall b = u × n = γ′ × (γ′′/|γ′′|). Hence

b′ = γ′′ ×
(

γ′′

|γ′′|

)
+ γ′ ×

[
γ′′′

|γ′′| −
γ′′′ · γ′′
|γ′′|2 γ′′

]

= 0 + u ×
[
γ′′′

κ
− (γ′′′ · n)n

]
.

But b′ = −τn, so

τ = −n · b′ = −n ·
[
u × γ′′′

κ

]
=

γ′′′

κ
· (u × n) =

γ′′′

κ
· b.

�

So if τ(s0) > 0, the curve punctures its osculating plane at γ(s0) upwards, and if
τ(s0) > 0 it punctures downwards.

u

n
b

u

n
b

τ > 0 τ < 0
Let’s test our understanding on a few examples. In each case, we want to determine

whether the torsion of the curve at the marked point is positive, negative or zero.
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Note: the sign of τ does not depend on the orientation of the curve, that is, the
direction in which it is traversed.
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4.3 The Frenet formulae

Recall that the curvature κ and torsion τ of a USCNVC in R
3 can be extracted by

decomposing u′(s) and b′(s) relative to the Frenet frame [u(s), n(s), b(s)]:

u′(s) = κ(s)n(s) — (1) b′(s) = −τ(s)n(s) — (2)

What about n′(s)? Does this give us yet another scalar quantity analogous to κ and
τ? In fact, it does not, as we shall now show.

As before, since n′ : I → R
3 is a smooth, vector valued function, there must exist

smooth scalar functions λ, µ, ν : I → R such that

n′(s) = λ(s)u(s) + µ(s)n(s) + ν(s)b(s),

and, since [u, n, b] is orthonormal (Lemma 57), we may extract the coefficients by
taking scalar products:

λ(s) = u(s) · n′(s), µ(s) = n(s) · n′(s), ν(s) = b(s) · n′(s).
• Now u(s) · n(s) = 0 for all s, which upon differentiating with respect to s yields

0 = u′(s) · n(s) + u(s) · n′(s) = κ(s)n(s) · n(s) + u(s) · n′(s) = κ(s) + λ(s),

using equation (1). Hence λ(s) = −κ(s).

• Similarly, n(s) · n(s) = 1 for all s, and differentiating yields

0 = n′(s) · n(s) + n(s) · n′(s) = 2µ(s).

Hence µ(s) = 0.

• Finally, b(s) · n(s) = 0 implies

0 = b′(s) · n(s) + b(s) · n′(s) = −τ(s)n(s) · n(s) + b(s) · n′(s) = −τ(s) + ν(s),

using equation (2). Hence ν(s) = τ(s).

Assembling the pieces, we have the formula

n′(s) = −κ(s)u(s) + τ(s)b(s) — (3)

Taking (1),(2),(3) together, we have just proved:

Theorem 62 (The Frenet formulae) Let γ : I → R
3 be a unit speed curve of

nonvanishing curvature. Then its Frenet frame satisfies the formulae

u′(s) = κ(s)n(s)
n′(s) = −κ(s)u(s) +τ(s)b(s)
b′(s) = −τ(s)n(s) �

We will use the Frenet formulae to prove two fundamental results:

• That a USCNVC in R
3 is planar if and only if its torsion is zero.

• That a USCNVC in R
3 is uniquely determined by its scalar curvature and torsion

(almost).
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Definition 63 A plane P ⊂ R
3 is the

set of points x ∈ R
3 satisfying the equa-

tion
B · x = ν,

where B ∈ R
3 and ν ∈ R are constants,

and B is a unit vector (|B| = 1). Geo-
metrically, B determines the orientation
of the plane P , while |ν| is its distance
from the origin, (0, 0, 0). [Note that the
pairs (B, ν) and (−B,−ν) describe the
same plane.]

A curve γ : I → R
3 is planar if its im-

age is contained in some plane P , that is,
if there exist constants B ∈ R

3, |B| = 1
and ν ∈ R, such that

B · γ(s) = ν

for all s ∈ I

x x

x

1 2

3

�

Example 64 The USCNVC γ(s) = 1
2
(1+2 sin s,

√
3+cos s, 1−

√
3 cos s) is a planar

curve. �

How on earth do I know this? One way to settle the issue is to use:

Theorem 65 Let γ : I → R
3 be a USCNVC. Then γ is planar if and only if τ(s) = 0

for all s ∈ I.

Proof: We must prove: (A) γ planar ⇒ τ = 0
(B) τ = 0 ⇒ γ planar

(A) Assume γ is planar. Then there exist constants B ∈ R
3 and ν ∈ R, as in

definition 63 such that, for all s ∈ I,

γ(s) · B = ν

Diff. w.r.t. s: u(s) · B = 0

Diff. w.r.t. s again: k(s) · B = 0

⇒ κ(s)n(s) · B = 0

⇒ n(s) · B = 0

since γ has nonvanishing curvature. So B is a unit vector, and is orthogonal to both
u(s) and n(s) for all s. Compare this with b(s) = u(s)× n(s). This has precisely the
same properties. Furthermore, in R

3, the unit vector orthogonal to both u(s) and
n(s) is unique up to sign. Hence

b(s) = ±B,
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a constant vector. Hence b′(s) = 0 and so τ(s) = 0 for all s ∈ I by the last Frenet
formula.

(B) Assume τ ≡ 0. Then b′ ≡ 0 and hence b(s) = b0, a constant unit vector (by the
Mean Value Theorem). But then

d

ds
(γ(s) · b0) = u(s) · b0 = u(s) · b(s) = 0.

Hence γ(s) · b0 = a, some constant (by the Mean Value Theorem again). So γ lies in
the plane determined by the unit vector B = b0 and the constant ν = a. �

[Note: we only used the first and last Frenet formulae in this proof.]

Example 64 (revisited) Let’s use theorem 65 to show that

γ(s) =
1

2
(1 + 2 sin s,

√
3 + cos s, 1 −

√
3 cos s)

is planar, and to construct the plane in which it lies. First, check it’s a USCNVC:

γ′(s) =

|γ′(s)| =

k(s) = γ′′(s) =

κ(s) = |k(s)| =

Now construct its Frenet frame, compute b′(s) and extract τ :

u(s) = γ′(s) =

n(s) =
k(s)

|k(s)| =

b(s) = u(s) × n(s) =

b′(s) =

τ(s) =
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and hence γ is planar. Which plane?

B = b(s) =

ν = γ(s) · b(s) = γ(0) · b(0) =

So the plane P containing γ has equation

( , , ) · (x1, x2, x3) = , ⇒ �

So what kind of curve is this?

• It’s planar.

• It has constant curvature.

Is it, perhaps, a circle? The answer is yes, but we will need to develop another piece
of theory to demonstrate this.

Recall that a USC in R
2 is uniquely determined by its signed curvature κ and its

initial position γ0 and initial velocity (cos θ0, sin θ0) (Theorem 35). It turns out that
a similar result holds for a USCNVC in R

3, except now we have to specify the scalar
curvature κ, the torsion τ , the initial position γ0, the initial velocity u0 and the initial
normal vector n0 (or equivalently, the initial osculating plane).

Theorem 66 Given smooth functions κ : I → (0,∞), τ : I → R (0 ∈ I) and
constants γ0, u0, n0 ∈ R

3, |u0| = |n0| = 1, u0 · n0 = 0, there exists a unique unit speed
curve γ : I → R

3 with
(a) γ(0) = γ0 (b) γ′(0) = u0 (c) n(0) = n0 (d) curvature κ (e) torsion τ .

Partial proof: Existence – too hard (see MATH 3181). Uniqueness: Let γ, γ̃ be any
pair of curves satisfying (a)–(e). We will show that γ(s) = γ̃(s) for all s ∈ I. Since
both curves have identical torsion and (nonvanishing) curvature, their Frenet frames,

call them [u, n, b] and [ũ, ñ, b̃] respectively, both satisfy the Frenet formulae for κ and
τ . It follows that

1

2

d

ds

{
|u − ũ|2 + |n − ñ|2 + |b − b̃|2

}

= (u − ũ) · (u′ − ũ′) + (n − ñ) · (n′ − ñ′) + (b − b̃) · (b′ − b̃′)

= −[u · ũ′ + u′ · ũ + n · ñ′ + n′ · ñ + b · b̃′ + b′ · b̃]
= −[u · κñ + κn · ũ + n · (−κũ + τ b̃) + (−κu + τb) · ñ + b · (−τñ) − τn · b̃]
= 0

by the Frenet formulae. Hence

|u − ũ|2 + |n − ñ|2 + |b − b̃|2 = C (1)

some constant. Substituting s = 0 in (1) and using properties (b) and (c), one sees
that C = 0. Since all terms on the left hand side of (1) are non-negative, it follows
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that each is identically zero. Hence |u(s) − ũ(s)| = 0 for all s. It follows that for all
s,

d

ds
(γ(s) − γ̃(s)) = 0

⇒ γ(s) − γ̃(s) = v

a constant vector, which by property (a) must be 0. Hence γ ≡ γ̃. �

A less formal way of stating this result is that, up to rigid motions (translations and
rotations of R

3), a USCNVC is uniquely determined by κ(s) and τ(s).
So, since a circle has constant scalar curvature (Example 36) and zero torsion (it’s

planar), Example 64 must be a circle, by Theorem 66.
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Summary

• Given a RPC γ : I → R
3 of nonvanishing curvature we define its unit tangent

vector u(t), principal unit normal n(t) and binormal b(t) by

u(t) =
γ′(t)

|γ′(t)| , n(t) =
k(t)

|k(t)| , b(t) = u(t) × n(t).

This triple of vectors forms an orthonormal basis for R
3 called the Frenet frame.

• The curvature |k(t)| is usually denoted κ(t). Note κ ≥ 0.

• For a unit speed curve γ : I → R
3 of nonvanishing curvature we define the

torsion τ : I → R by
b′(s) = −τ(s)n(s).

• A USCNVC is planar if and only if τ ≡ 0.

• The rate of change of the Frenet frame as one travels along a USCNVC is deter-
mined by the torsion and curvature according to the Frenet formulae

u′(s) = κ(s)n(s)
n′(s) = −κ(s)u(s) +τ(s)b(s)
b′(s) = −τ(s)n(s)

• A USCNVC is uniquely determined (up to rigid motions) by its curvature and
torsion.
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5 Regularly parametrized surfaces

5.1 The basic definition

Our approach to studying the geometry of curves in R
n was to think of them as

smooth maps γ : I → R
n. Recall that not every such map gives a nice, smooth,

regular curve. We needed to impose a constraint on the derivative of γ, namely γ′(t)
should never vanish, in order to guarantee the curve was well behaved.

We now want to develop a similar method for studying surfaces, roughly speaking,
nice smooth two-dimensional sets in R

3. Actually, the techniques we will study
generalize quite easily to work for (n − 1)-dimensional surfaces in R

n for any n, but
we will stick to two-dimensional surfaces in R

3 because these are easiest to visualize.
Again, we will think of surfaces as smooth maps M : U → R

3, where U is (a subset of)
R

2, so a surface will be a R
3-valued function of two variables, M(x1, x2). Once again,

not every such map gives a nice smooth surface, and we need to impose constraints
on the behaviour of M(x1, x2) to guarantee its image set is well behaved. Just as
for curves, the constraints amount to the requirement that the map M : U → R

3 be
regular, but to make this notion precise requires a little more work.

First, we identify the class of domains U we will be using. Our main concern
is that we can do calculus with M , so we require that the domain has no boundary
points (defining limits at boundary points is tricky).

Definition 67 For each x ∈ R
2 and r > 0 let Br(x) = {y ∈ R

2 : |y − x| < r} be
the disk of radius r centred at x. Then a subset U ⊆ R

2 is open if for all x ∈ U
there exists δ > 0 such that Bδ(x) ⊆ U . �

The idea is that no point in U lies at the edge of U , because every point can be
surrounded by some disk in U . This is a generalization of the idea of an open interval
in R (one which has no endpoints).

Example 68 The sets

(−1, 1) × R, (0, π) × (0, 1), {x ∈ R
2 : 1 < |x| < 2}, {x ∈ R

2 : x1 > −1}

x

x

1

2

x

x

1

2

x

x

1

2

x

x

1

2

are all open sets, while

[−1, 1) × R, (0, π) × (0, 1], {x ∈ R
2 : 1 ≤ |x| ≤ 2}, {x ∈ R

2 : x1 = −1}

x

x

1

2

x

x

1

2

x

x

1

2

x

x

1

2
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are not. �

Definition 69 Given a smooth map M : U → R
3, where U ⊆ R

2 is open, let the
coordinate basis vectors be ε1, ε2 : U → R

3,

ε1 =
∂M

∂x1
, ε2 =

∂M

∂x2
.

The point (x1, x2) ∈ U is a regular point of M if {ε1(x1, x2), ε2(x1, x2)} is linearly
independent. The map M is regular if every (x1, x2) ∈ U is a regular point. If M is
not regular, we say it is singular, and refer to those values of x where ε1×ε2 = (0, 0, 0)
as the singular points of the map. �

Since {ε1(x1, x2), ε2(x1, x2)} contains only two vectors, it is linearly independent
if and only if the vectors are not parallel. Two vectors in R

3 are parallel if and only
if their vector product vanishes, so another (more convenient) way to state Definition
69 is

Definition 69 (*) M : U → R
3 is regular if for all x ∈ U ,

ε1(x) × ε2(x) 6= (0, 0, 0).

Definition 70 A regularly parametrized surface (RPS) is a one-to-one, regular
map M : U → R

3. �

We will often denote the image set of the map by the same symbol, M , rather than
M(U), and refer to it as a RPS, in the same way that we often used the symbol γ to
denote both a RPC and its image.

Example 71 (A sphere (almost)) Let U = (0, π) × (0, 2π). Note this is an open
subset of R

2 (it is a rectangle without boundary). Consider the mapping

M : U → R
3, M(x1, x2) = (sin x1 cos x2, sin x2 sin x2, cos x1)

I claim this is a RPS. Let’s check this:

(A) is M one-to-one?
(B) is M regular?

(A)
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(B) ε1(x1, x2) =

ε2(x1, x2) =

ε1 × ε2 =

What does this RPS look like? Imagine we fix the value of parameter x1 at some
constant value, θ ∈ (0, π) say, and allow x2 to take all values in (0, 2π). We can then
think of x2 as a “time” coordinate so that, associated to the constant θ we have a
curve

βθ : (0, 2π) → R
3, βθ(t) = M(θ, t) = (sin θ cos t, sin θ sin t, cos θ)

This is a circle of radius sin θ ∈ (0, 1) in the horizontal plane y3 = cos θ ∈ (−1, 1).
Actually, it isn’t quite a whole circle, as the point (sin θ, 0, cos θ) is missing (t can’t
take the value 0 or 2π). Note that, by the very definition of partial differentiation,

β ′θ(t) =
d

dt
M(θ, t)

∣∣∣∣
θ const

=
∂M

∂x2

∣∣∣∣
(θ,t)

= ε2(θ, t)

which gives a geometric interpretation of ε2: it’s the tangent vector along the curve
defined by holding x1 fixed but allowing x2 to vary.

So, for each θ ∈ (0, π) we have a curve βθ which is a circle of radius sin θ in the
plane y3 = cos θ. As we allow θ to vary in (0, π), the plane containg the circle shifts
vertically from y3 = 1 (θ = 0) to y3 = −1 (θ = π) while at the same time growing
from radius 0 (θ = 0) to radius 1 (θ = π

2
) then shrinking back down to radius 0 again

(θ = π). The surface itself is the union of all these curves. In fact, for all θ and t,

|M(θ, t)|2 =

so every point on M lies distance 1 from (0, 0, 0). Hence M is the surface of a sphere
of radius 1. Actually, it isn’t quite the whole sphere since it misses out one point on
each circle so, in total, the whole semicircular line segment

ℓ = {(sin θ, 0, cos θ) : 0 ≤ θ ≤ π}

is missing.
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Note that we could equally well have reconstructed the surface by considering the
curves generated by fixing x2 to a constant value, φ say, and allowing x1 to take all
values t in (0, π):

αφ : (0, π) → R
3, αφ(t) = M(t, φ) = (sin t cos φ, sin t sin φ, cos t)

Each of these is a semicircle of radius 1 starting at (0, 0, 1) and ending at (0, 0,−1).
As φ covers (0, 2π) the semicricle αφ rotates about the y3 axis, sweeping out the unit
sphere. As before, the semicircle ℓ (which would be α0) is missing.

Remark 72 This idea applies to any RPS M : U → R
3. If we fix x2 = a, some

constant, we get a curve αa(t) = M(t, a) along which x1 varies. Changing the fixed
value a generates a family of curves which sweep out (perhaps only part of) the surface
M . Similarly if we fix x1 = b, some constant, we get a curve βb(t)(t) = M(b, t) along
which x2 varies. Changing the fixed value b generates a family of curves which sweep
out (perhaps only part of) the surface M . Furthermore

ε1(t, a) = α′a(t), ε2(b, t) = β ′b(t)

which gives a geometric interpretation of the coordinate basis vectors.
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Example 73 (A paraboloid) Is the map M : R
2 → R

3,

M(x1, x2) = (x1, x2, x
2
1 + x2

2)

a RPS? Must check two things:

(A) is M one-to-one?
(B) is M regular?

(A)

(B) ε1(x1, x2) =

ε2(x1, x2) =

ε1 × ε2 =

So M is a RPS. Note that it is not always necessary to calculate all 3 components
of ε1(x) × ε2(x) to show that M is regular at x. If we show that any one of the
components is never 0, that suffices. In general, to show that a map M : U → R

3

is regular, we have to show that the 3 components of ε1 × ε2 never simultaneously
vanish.

Think of the map M as attaching a pair
of coordinates (x1, x2) to each point y on
the surface. For example,

• y = (1, 1, 2) ∈ M has coords x =
(1, 1)

• y = (−1, 2, 5) ∈ M has coords x =
( , )

• What about y = (0, 1,−3)?

�

y y

y

1 2

3

This is why definition 70 requires the map M : U → R
2 to be one-to-one: for every

y ∈ M there is one and only one point x ∈ U such that M(x) = y. This point
x = (x1, x2) defines the local coordinates of y. So we have a way of refering
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to points on the surface using 2 numbers (the components of x), rather than 3 (the
components of y itself). We’ve already seen something like this: given a parametrized
curve γ : I → R

n, we may refer to any point y on the curve either by its components
(y1, y2, . . . , yn), or more succinctly, by specifying the time t ∈ I at which γ(t) = y.

Remark 74 In Example 71 our RPS covered only a part of the unit sphere

S = {(y1, y2, y3) ∈ R
3 : y2

1 + y2
2 + y3

3 = 1}.

This will be a common situation: often we want to “parametrize” a surface which
can’t be covered all in one go. Usually, a RPS which covers almost all of the surface
is good enough. In Example 73 we had a RPS which covered all of the paraboloid

P = {(y1, y2, y3) ∈ R
3 : y2

1 + y2
2 − y3 = 0}.

in one go. What if we seek a RPS whose image set is the cylinder

C = {(y1, y2, y3) ∈ R
3 : y2

1 + y2
2 = 1}?

Can we cover the whole of C is one go? It may surprise you to hear that the answer
is yes! One example of such a RPS is M : U → R

3,

M(x1, x2) =

(
x1√

x2
1 + x2

2

,
x2√

x2
1 + x2

2

, log
√

x2
1 + x2

2

)

where U = {(x1, x2) ∈ R
2 : (x1, x2) 6= (0, 0)} the punctured plane.

Exercise: verify this, that is, show that M is a RPS and that its image set is the
whole of C.

Example 75 If we are content with a RPS whose image set is almost all of the
cylinder C, things are much easier. We can take M : (0, 2π) × R → R

3,

M(x1, x2) = (cos x1, sin x1, x2)

for example. Let’s check:

• Is M regular?

ε1(x1, x2) =

ε2(x1, x2) =

ε1 × ε2 =

which vanishes only if sin x1 = 0 and cosx1 = 0, which is impossible. So M is
regular.
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• Is it one-to-one? Assume M(x1, x2) = M(x1, x2). Then

(cos x1, sin x1, x2) = (cos x1, sin x1, x2)

so x2 = x2 and x1 − x1 is an integer multiple of 2π. But x1 and x1 are in
(0, 2π), so their difference must be 0. Hence M(x1, x2) = M(x1, x2) implies
(x1, x2) = (x1, x2), that is, M is one-to-one.

The resulting surface is almost all of C. What points are missing?

x

x

1

2

y y

y

1 2

3

This RPS omits the vertical line through (1, 0, 0). We can always include this line, at
the expense of omitting a different one, by changing the domain of M . For example,
choosing U = (−π, π) × R omits the vertical line through (−1, 0, 0) instead.

We can give a geometric interpretation to the local coordinates (x1, x2) for this
RPS. Given a point y = M(x1, x2) on C we see that x2 is the height of y above the
plane y3 = 0, and x1 is an angular coordinate which measures the angular position of
(y1, y2) in the plane (relative to the positive y1 axis).

�
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5.2 The tangent and normal spaces

Recall that every point on a regularly parametrized curve has a well defined tangent
line. The generalization of this to regularly parametrized surfaces is called the tangent
space:

Definition 76 Let y ∈ M be a point on a surface M : U → R
3. Then a curve

through y in M is a smooth map α : I → M (0 ∈ I) with α(0) = y. The tangent
space to M at y ∈ M is

TyM = {v ∈ R
3 : there exists a curve α through y with α′(0) = v}.

Any v ∈ TyM is called a tangent vector to M at y. �

So the tangent space at y is the set of all possible velocity vectors α′(0) ∈ R
3 of curves

α passing through y. Note that the curve α is not assumed to be regular.

x

x

1

2

y y

y

1 2

3

Example 77 (paraboloid) Let M : R
2 → R

3, M(x1, x2) = (x1, x2, x
2
1 + x2

2) and
y = (2, 1, 5) = M(2, 1). The easiest way to define a curve through y in M is to write
down its coordinate expression α̂ : I → R

2. In order to be a curve through y, this
must satisfy

α̂(0) = M−1(2, 1, 5) = (2, 1).

For example,

α̂(t) = (2, 1 + t) ⇒ α(t) = M(α̂(t)) =

β̂(t) = (2 + t, 1 − t) ⇒ β(t) = M(β̂(t)) =

γ̂(t) = (2 + t2, 1 + cos t) ⇒ γ(t) = M(α̂(t)) =

all give curves through y in M . The corresponding tangent vectors are:

α′(0) =

β ′(0) =

γ′(0) =

[Note that γ is not a RPC]. �
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A handy way to calculate with tangent vectors is to express them in terms of the
coordinate basis vectors ε1, ε2 at x = x̄. If α is a curve through y = M(x̄), then

α(t) = M(α̂(t)) = M(α̂1(t), α̂2(t))

⇒ α′(0) =
∂M

∂x1

∣∣∣∣
bα(0)

α̂′1(0) +
∂M

∂x2

∣∣∣∣
bα(0)

α̂′2(0) = α̂′1(0)ε1(x̄) + α̂′2(0)ε2(x̄)

So every tangent vector can be expressed as a linear combination of ε1(x̄), ε2(x̄).
Furthermore, every linear combination of ε1(x̄), ε2(x̄) is a tangent vector, as we shall
now prove. Let v = aε1(x̄) + bε2(x̄) where a, b ∈ R. I claim that v ∈ TyM , that is,
that there exists a curve through y whose velocity vector at time t = 0 is v. One such
curve is

α(t) = M(x̄1 + at, x̄2 + bt)

Check:

α′(0) =

=

Hence
TyM = {aε1 + bε2 | a, b ∈ R}.

It follows that the subset TyM ⊂ R
3 is closed under vector addition and scalar

multiplication: TyM is a subspace of R
3. Further, {ε1, ε2} is a spanning set for this

subspace. Since M is regular, this spanning set is linearly independent, hence a basis
for TyM . This explains why we call ε1, ε2 the coordinate basis vectors of the surface.

To summarize, we have proved the following:

Theorem 78 TyM is a vector space of dimension 2 spanned by {ε1, ε2}. �

Definition 79 The normal space at y ∈ M is

NyM = {v ∈ R
3 : v · u = 0 for all u ∈ TyM}.

Any v ∈ NyM is said to be normal to M at y. �

Remark 80 By its definition, NyM is also a vector space, that is, it is closed under
vector addition and scalar multiplication: let v, w ∈ NyM and a, b ∈ R. Then for all
u ∈ TyM ,

u · (av + bw) = a(u · v) + b(u · w) = 0 + 0

so av + bw ∈ NyM . Clearly NyM is one-dimensional, so any non-zero normal vector,
for example ε1 × ε2, is a basis for NyM .
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We can use ε1 × ε2 to give an alternative characterization of TyM :

Lemma 81 TyM = {v ∈ R
3 | v · (ε1 × ε2) = 0}.

Proof: Consider the linear map L : R
3 → R, L(v) = v · (ε1 × ε2). The lemma

asserts that TyM is the kernel of L (the set of vectors which get mapped to 0). Since
ε1 × ε2 ∈ NyM , every v ∈ TyM is orthogonal to ε1 × ε2, so TyM ⊂ ker L. Since
L(ε1 × ε2) 6= 0, ker L has dimension at most 2. Hence ker L ⊂ TyM . �

This gives us a sneaky way of checking whether a given vector is a tangent vector.

Example 82 (saddle surface) Let M : R
2 → R

3 such that

M(x1, x2) = (x1, x2, x1x2).

I claim this is a regularly parametrized surface:

(a) is M one-to-one?

(b) is M regular?

ε1 = ε2 =

ε1 × ε2 =
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The point y = (3,−2,−6) ∈ M has local coordinates x̄ = (3,−2), so the coordinate
basis for TyM is

ε1 = ε2 =

and NyM is spanned by

ε1 × ε2 =

Let’s determine whether the following vectors are in TyM , NyM or neither:

u = (1, 2, 4), v = (2, 1, 1), w = (−4, 6,−2).

u: u · (ε1 × ε2) =

So v ∈ TyM . Hence (1, 2, 4) = aε1 + bε2 for some a, b ∈ R. In fact

(1, 2, 4) =

so a = and b = .

v: v · (ε1 × ε2) =

So v /∈ TyM . What about NyM?

v·ε1 = v·ε2 =

So v /∈ NyM either.

w: w · (ε1 × ε2) =

So w /∈ TyM . What about NyM?

w·ε1 = w·ε2 =

So w ∈ NyM . Hence w = c ε1 × ε2 for some c ∈ R. In fact

(−4, 6,−2) =

so c = . �

Summary

• Given a smooth mapping M → U → R
3, where U ⊆ R

2 is an open set, its
coordinate basis vectors are

ε1 =
∂M

∂x1
, ε2 =

∂M

∂x2
.

M is regular if for all x ∈ U , ε1(x) × ε2(x) 6= 0.

• A regularly parametrized surface is a regular, one-to-one map M : U → R
3.

• The tangent space TyM at y = M(x) is the set of all velocity vectors of curves
in the surface M passing through the point y. It is a two-dimensional vector
space spanned by {ε1(x), ε2(x)}.

• The normal space NyM at y = M(x) is the set of vectors in R
3 orthogonal to

TyM . It is a one-dimensional vector space spanned by ε1(x) × ε2(x).
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6 Calculus on surfaces

6.1 Directional derivatives

Given a regularly parametrized surface M : U → R
3, we may consider real-valued

functions on M , f : M → R, that is, rules which assign to each point y ∈ M ⊂ R
3

some real number f(y).

x y

M
U

f

f(y)

We will need to make sense of calculus for such functions (rates of change etc.).
As a first step, we define when f : M → R is smooth. Recall that a mapping
F : R

n → R is smooth if all its partial derivatives (of all orders) exist everywhere. It
doesn’t make sense to demand directly that f : M → R is smooth: what does it mean
to differentiate a function with repect to a point on a paraboloid, for example? To
get round this, we use the parametrization provided by M : U → R

3. That is, loosely
speaking, we think of f as a function not of y ∈ M but of the local coordinates
x ∈ M corresponding to y.

Definition 83 Let M : U → R
3 be a regularly parametrized surface. The coordi-

nate expression of f is f̂ : U → R defined by f̂ = f ◦ M , that is,

f̂(x1, x2) = f(M(x1, x2)).

We say that f is smooth if f̂ is smooth in the usual sense (all its partial derivatives,
of all orders, exist at all x ∈ U).

Example 84 Consider the RPS defined in Example 71, whose image is (almost all
of) the unit sphere:

M : (0, π) × (0, 2π) → R
3, M(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ).

We have denoted the local coordinates (θ, φ) instead of (x1, x2), as is traditional for
this RPS (they are polar coordinates).

θ

ϕ

π

2π
θ

ϕ

M
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The following maps M → R

f : (y1, y2, y3) 7→ y1+y2+y3, g : (y1, y2, y3) 7→ y2
1+y2

2−y2
3, h : (y1, y2, y3) 7→ 1−2y2

3.

have coordinate expressions

f̂(θ, φ) = f(M(θ, φ)) =

ĝ(θ, φ) = g(M(θ, φ)) =

ĥ(θ, φ) = h(M(θ, φ)) =

These are all smooth functions of θ and φ, so f, g, h are smooth functions M → R.
Note that g and h are really the same function. Why?

Given a smooth function f : M → R on a regularly parametrized surface M , and
a tangent vector v ∈ TyM , we can ask “what is the rate of change of f at y in the
direction of v?” The answer is given (almost) by the following definition:

Definition 85 Let f : M → R be a smooth function and v ∈ TyM . The directional
derivative of f along v is

v[f ] = (f ◦ α)′(0)

where α : I → M is a curve through y (α(0) = y) whose velocity vector at y is
α′(0) = v. [Such a curve exists by the definition of TyM , Definition 76.] Note that
u[f ] is a single number, associated with the point y, not a function on M . �

Example 86 Let M be the unit sphere (parametrized as in Example 71 say), let
y = (0, 1, 0) and v = (0, 0, 1). Then v ∈ TyM (check it!). Consider the function
f : M → R given by

f(y1, y2, y3) = y3

which assigns to each point on the sphere its “height” above the (y1, y2) plane. What
is v[f ]?

From the definition, we must choose a curve through (0, 1, 0) in M whose initial
velocity is (0, 0, 1). One obvious choice is

α(t) = (0, cos t, sin t).

Check: |α(t)| =

α(0) =

α′(0) =
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Now: (f ◦ α)(t) =

(f ◦ α)′(t) =

So: v[f ] =

Note that v[f ] isn’t quite just the “rate of change of f in the direction of v,” because
it depends on the length of v. For example, let u = 2v = (0, 0, 2) ∈ TpM . Then this
points in the same direction as v, but is the initial velocity vector of the curve

β(t) = (0, cos 2t, sin 2t)

through y.

Now: (f ◦ β)(t) =

(f ◦ β)′(t) =

So: u[f ] =

which is different from v[f ]. In fact u[f ] = 2v[f ]. Coincidence? �

One nice thing about Definition 85 is that it doesn’t use the specific parametriza-
tion of the surface involved (we never actually had to worry about the defining map
M(θ, φ) for the unit sphere in the above example). There is something a bit worrying
about it, however. To compute v[f ] we have to choose a curve α with initial velocity
v. There are infinitely many such curves. In the example above, we could equally
well have chosen

α(t) = (0,
√

1 − t2, t), or α(t) = (t2,
√

1 − t4 − sin2 t, sin t)

for example. How do we know that the answer doesn’t depend on our choice?

Lemma 87 v[f ] is independent of the choice of curve α representing the tangent
vector v.

Proof: Let α, β : I → M be two curves through y = M(x̄) with α′(0) = β ′(0) = v.
Then

α(t) = M(α̂(t)), β(t) = M(β̂(t))

where α̂, β̂ : I → U are their coordinate expressions. Hence

0 = α′(0) − β ′(0) =
d

dt

∣∣∣∣
t=0

[M(α̂1(t), α̂2(t)) − M(β̂1(t), β̂2(t))]

=
∂M

∂x1

∣∣∣∣
x̄

[α̂′1(0) − β̂ ′1(0)] +
∂M

∂x2

∣∣∣∣
x̄

[α̂′2(0) − β̂ ′2(0)]

= [α̂′1(0) − β̂ ′1(0)]ε1(x̄) + [α̂′2(0) − β̂ ′2(0)]ε2(x̄)

⇒ α̂′(0) = β̂ ′(0) ({ε1, ε2} linearly independent) (♣).
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Hence

d

dt

∣∣∣∣
t=0

[f(α(t)) − f(β(t))] =
d

dt

∣∣∣∣
t=0

[f(M(α̂(t))) − f(M(β̂(t)))]

=
d

dt

∣∣∣∣
t=0

[f̂(α̂(t)) − f̂(β̂(t))]

=
∂f̂

∂x1

∣∣∣∣∣
x̄

[α̂′1(0) − β̂ ′1(0)] +
∂f̂

∂x2

∣∣∣∣∣
x̄

[α̂′2(0) − β̂ ′2(0)] = 0

by (♣). �

This is reassuring. However, Definition 85 is rather cumbersome to use in practice
because it’s tiresome to have to keep inventing curves to represent tangent vectors.
Recall that we may also think of TyM as

TyM = {a ε1 + b ε2 | a, b,∈ R}.

The next Lemma will allow us to reduce the calculation of directional derivatives to
straightforward partial differentiation with respect to the local coordinates (x1, x2).

Lemma 88 v[f ] is linear with respect to both v and f . That is, for all u, v ∈ TyM ,
a, b ∈ R and f, g : M → R,

(A) (au + bv)[f ] = a(u[f ]) + b(v[f ])

(B) v[af + bg] = a(v[f ]) + b(v[g])

Proof:
(A) Let α, β : I → M be curves through y = M(x̄) with α′(0) = u, β ′(0) = v, and let

α̂, β̂ : I → U be their coordinate expressions. Then

γ̂(t) = α̂(at) + β̂(bt) − x̄

is the coordinate expression of a curve γ(t) = M(γ̂(t)) through y with γ′(0) = au+bv.
[Check it!] Hence,

(au + bv)[f ] =
d

dt

∣∣∣∣
t=0

f(γ(t)) =
d

dt

∣∣∣∣
t=0

f(M(γ̂(t))) =
d

dt

∣∣∣∣
t=0

f̂(γ̂(t))

=
∂f̂

∂x1

∣∣∣∣∣
x̄

γ̂′1(0) +
∂f̂

∂x2

∣∣∣∣∣
x̄

γ̂′2(0)

=
∂f̂

∂x1

∣∣∣∣∣
x̄

[aα̂′1(0) + bβ̂ ′1(0)] +
∂f̂

∂x2

∣∣∣∣∣
x̄

[aα̂′2(0) + bβ̂ ′2(0)]

= a

[
∂f̂

∂x1

∣∣∣∣∣
x̄

α̂′1(0) +
∂f̂

∂x2

∣∣∣∣∣
x̄

α̂′2(0)

]
+ b

[
∂f̂

∂x1

∣∣∣∣∣
x̄

β̂ ′1(0) +
∂f̂

∂x2

∣∣∣∣∣
x̄

β̂ ′2(0)

]

= a(f̂ ◦ α̂)′(0) + b(f̂ ◦ β̂)′(0)

= a(u[f ]) + b(v[f ])
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(B) Follows immediately from the definition:

v[af + bg] = ((af + bg) ◦ β)′(0) = (af ◦ β + bg ◦ β)′(0)

= a(f ◦ β)′(0) + b(g ◦ β)′(0) = a(v[f ]) + b(v[g]). �

The upshot of Lemma 88 is that if we know the directional derivatives with respect
to the coordinate basis vectors, ε1[f ], ε2[f ], we know v[f ] for all tangent vectors
v ∈ TyM . For any v ∈ TyM may be written as

v = aε1 + bε2

so applying Lemma 88 part (A) gives

v[f ] = aε1[f ] + bε2[f ]. (♠)

But ε1(x̄) and ε2(x̄) may be represented by the x1- and x2-parameter curves, whose
coordinate expressions are

(x̄1 + t, x̄2), (x̄1, x̄2 + t)

respectively. Hence

ε1[f ] =
∂f̂

∂x1

, ε2[f ] =
∂f̂

∂x2

.

Example 86 (revisited) Let’s re-do Example 86 using the trick of reducing direc-
tional derivatives to partial differentiation. Recall M is the unit sphere parametrized
by

M(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ).

The function is f(y1, y2, y3) = y3 and we wish to compute v[f ] where v = (0, 0, 1) ∈
TyM and y = (0, 1, 0).

• The local coordinates of y are x̄ = (θ, φ) = ( , )
[Check: M( , ) =

• The local coordinate expression for f is

f̂(θ, φ) =

• The coordinate basis vectors at y are

ε1(x̄) =

ε2(x̄) =

• Hence, v = aε1 + bε2 where

a = , b =
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• Finally,

v[f ] = aε1[f ] + bε2[f ] = a
∂f̂

∂θ

∣∣∣∣∣
x̄

+ b
∂f̂

∂φ

∣∣∣∣∣
x̄

=

We got the same answer! Which calculation was easier, Example 86 or Example
86 (revisited)?

Example 89 Consider the mapping

M : R
2 → R

3, M(x1, x2) = (x1 + x2, x1x2, x1 − 2x2).

(i) Verify that M is a RPS

(ii) Show that v = (3, 1, 0) is tangent to M at y = (1, 0, 1) = M(1, 0)

(iii) Compute v[f ] where f : M → R is f(y1, y2, y3) = (y1 + y3)y2

Solution:

(i) M(x) = M(x̄) implies

x1 + x2 = x̄1 + x̄2

x1 − 2x2 = x̄1 − 2x̄2

and hence 3x2 = 3x̄2 (subtracting the lower equation from the upper) whence
x2 = x̄2 and so x1 = x̄1 (substituting into the upper equation). Hence M is
one-to-one.

Furthermore

ε1 =

ε2 =

⇒ ε1 × ε2 =

which never vanishes, so M is a RPS.

(ii) At the point y = (1, 0, 1) = M(1, 0) the coordinate basis and normal vectors are

ε1 = ε2 = ε1 × ε2 =

so

v · (ε1 × ε2) =

and hence v ∈ TyM .
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(iii) We must write v = aε1 + bε2 for some constants a, b. That is, we seek a, b such
that

a( , , ) + b( , , ) = (3, 1, 0)

Re-arrange this as a set (of three) linear simultaneous equations for a, b, then
solve by row-reduction:

Hence v =

The function f has coordinate expression

f̂(x1, x2) =

Hence

v[f ] = a
∂f̂

∂x1

∣∣∣∣∣
(1,0)

+ b
∂f̂

∂x2

∣∣∣∣∣
(1,0)

=

=

�

The fact that we can reduce the calculation of v[f ] to partial differentiation is
theoretically convenient, too. For example, we know that partial derivatives obey the
product (or Leibniz) rule

∂

∂xi

(fg) = f
∂g

∂xi

+ g
∂f

∂xi

.

From this, we immediately obtain

Corollary 90 For all f, g : M → R and v ∈ TyM ,

v[fg] = f(y)v[g]+g(y)v[f ]. �
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6.2 Vector fields

As usual, let U be an open subset of R
2 and M : U → R

3 be a RPS.

Definition 91 A vector field on a RPS M is a smooth map V : M → R
3 (where

smooth means that each of its component functions V1, V2, V3 : M → R is smooth).
If V (y) ∈ TyM for all y ∈ M then V is a tangent vector field. If V (y) ∈ NyM for
all y ∈ M then V is a normal vector field.

Remark 92 Just as for functions, we define the coordinate expression of a vector
field V : M → R

3 to be

V̂ : U → R
3, V̂ (x1, x2) = V (M(x1, x2)).

It follows from Theorem 78 that the coordinate expression of any tangent vector
field V takes the form

V̂ (x1, x2) = f(x1, x2)ε1(x1, x2) + g(x1, x2)ε2(x1, x2)

where f, g are smooth real-valued functions on U . Similarly, it follows from Remark
80 that any normal vector field V : M → R

3 takes the form

V̂ (x1, x2) = f(x1, x2)ε1(x1, x2) × ε2(x1, x2)

where f is a smooth real-valued function on U . It is standard in Differential Geometry
to elide the difference between a vector field and its coordinate expression, so we will
often refer to ε1(x), ε2(x) as tangent vector fields and ε1(x)×ε2(x) as a normal vector
field.

Given a tangent vector v ∈ TyM and a function f : M → R, we can find the
directional derivative v[f ], a single real number. If instead of a single tangent
vector we are given a tangent vector field V : M → R

3, and a function f : M → R,
we can define a new function V [f ] : M → R,

V [f ](y) = V (y)[f ]

which assigns to each point y ∈ M the directional derivative of f with respect to
V (y) ∈ TyM . Note this only makes sense for tangent vector fields.

Example 93 On the unit sphere, M : (0, π) × (0, 2π) → R
3,

M(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ),

V (y1, y2, y3) = (2y2,−2y1, 0)

is a tangent vector field. To check this, construct its coordinate expression:

V̂ (θ, φ) = V (M(θ, φ)) =

=
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where we have used the fact that

εθ = εφ =

Let f : M → R such that f(y1, y2, y3) = y1 + y2
2. What is V [f ]?

Coordinate expression of f :

f̂(θ, φ) =

Hence

V [f ] =

=

=

Note that, strictly speaking, this is not V [f ] but rather its coordinate expression. To
obtain V [f ] we must change back from the local coordinates (θ, φ) to (y1, y2, y3):

V [f ](y1, y2, y3) = �

We may also define directional derivatives of vector fields:

Definition 94 Let V : M → R
n be a vector field on M and u ∈ TyM . Then the

directional derivative of V with respect to u is

∇uV = (V ◦ α)′(0)

where α : I → M is a curve through y ∈ M with α′(0) = u. �

Notes:

• This assigns to a single tangent vector u and a vector field V a single vector
∇uV ∈ R

3.

• V can be any vector field (not necessarily tangent). u must be a tangent vector.

• Even if V is a tangent vector field, there is no reason to expect ∇uV to be a
tangent vector.

• V (y) = (V1(y), V2(y), V3(y)) where the component functions Vi : M → R, i =
1, 2, 3 are smooth functions on M . Hence

∇uV = ((V1 ◦ α)′(0), (V2 ◦ α)′(0), (V3 ◦α)′(0)) = (u[V1], u[V2], u[V3]). (♦)

It follows immediately from Lemma 87 that ∇uV is well defined (independent
of the choice of the generating curve α).

Many other convenient properties of ∇uV follow immediately from equation (♦) and
our previous work on u[f ].

71



Lemma 95 Let V, W be vector fields on M , u, v ∈ TyM , f be a smooth function on
M and a, b ∈ R. Then

(a) ∇au+bvW = a∇uW + b∇vW.

(b) ∇u(aV + bW ) = a∇uV + b∇uW.

(c) ∇u(fW ) = u[f ]W (y) + f(y)∇uW.

(d) u[V · W ] = (∇uV ) · W (y) + V (y) · (∇uW ).

Proof: (a),(b) follow from Lemma 88 and (♦). (c) follows from Corollary 90 and (♦).
To see part (d), note that

u[V · W ] = u[V1W1 + V2W2 + V3W3]

= u[V1W1] + u[V2W2] + u[V3W3] (Lemma 88)

= u[V1]W1(y) + V1(y)u[W1] + u[V2]W2(y) + V2(y)u[W2] + u[V3]W3(y) + V3(y)u[W3]

(Corollary 90)

= (u[V1], u[V2], u[V3]) · W (y) + V (y) · (u[W1], u[W2], u[W3])

= (∇uV ) · W (y) + V (y) · (∇uW ). �

As with directional derivatives of functions, we can use Lemma 95 to reduce calcula-
tion of ∇uV to partial differentiation with respect to (x1, x2). We just need to express
u in terms of the coordinate basis and find the coordinate expression for V .

Example 96 Let V be the vector field on the unit sphere defined in Example 93.
Let u = (−1, 0, 1) ∈ T(0,1,0)M . Calculate ∇uV .
Task 0: Find the local coordinates of the basepoint y = (0, 1, 0) ∈ M .
In this case M(π/2, π/2) = (0, 1, 0), so (θ, φ) = (π/2, π/2).
Task 1: Write u in terms of the coordinate basis vectors.
At y = (0, 1, 0) the coordinate basis is

εθ = εφ

Hence

u =

Task 2: Find the coordinate expression for V .
We’ve already done this; it’s

V̂ (θ, φ) =

Task 3: Calculate the partial derivatives.

∇uV =

=

= �
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Given a tangent vector field U : M → R
3 and another vector field V : M → R

3

(tangent, normal or neither), we can define a 3rd vector field W : M → R
3 as

follows: at each y ∈ M ,
W (y) = ∇U(y)V.

We shall denote this vector field W = ∇UV . In fact, it will be almost exclusively in
this context that we will make use of the directional derivative ∇.

Example 97 For M as in Example 93, let N be the unit normal vector field

N =
εθ × εφ

|εθ × εφ|
.

Calculate the vector fields

∇εθ
εθ, ∇εθ

εφ, ∇εφ
εθ, ∇εφ

εφ, ∇εθ
N, ∇εφ

N.

In terms of coordinate expressions,

εθ = (cos θ cos φ, cos θ sin φ,− sin θ), εφ = (− sin θ sin φ, sin θ cos φ, 0),

εθ × εφ =

N =

Hence:

∇εθ
εθ =

∂εθ

∂θ
=

∇εθ
εφ =

∂εφ

∂θ
=

∇εφ
εθ =

∂εθ

∂φ
=

∇εφ
εφ =

∂εφ

∂φ
=

∇εθ
N =

∂N

∂θ
=

∇εφ
N =

∂N

∂φ
=

�
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These results have a couple of interesting features. First, we see that ∇εθ
εφ = ∇εφ

εθ.
Second, we see that both ∇εθ

N and ∇εφ
N are tangent vector fields. These observa-

tions are not special to the unit sphere, and will, in fact, have important consequences.
The first is very easy to prove:

Lemma 98 For all i, j, ∇εi
εj = ∇εj

εi.

Proof: The equation holds trivially if i = j. Hence we need only check the case i = 1,
j = 2. Then

∇ε1
ε2 =

∂ε2

∂x1
=

∂

∂x1

(
∂M

∂x2

)
=

∂2M

∂x1∂x2
.

But for any smooth function f : U → R

∂2f

∂x1∂x2
=

∂2f

∂x2∂x1
.

Hence

∇ε1
ε2 =

∂2M

∂x2∂x1
=

∂ε1

∂x2
= ∇ε2

ε1

which was to be proved. �

Summary

• A function f : M → R is smooth if its coordinate expression f̂ = f ◦M : U → R

is smooth.

• Given a smooth function f : M → R and a tangent vector v ∈ TyM , the
directional derivative of f with respect to (or along) v is

v[f ] = (f ◦ α)′(0)

where α(t) is any generating curve for v.

• The directional derivative is linear, that is

(au + bv)[f ] = a(u[f ]) + b(v[f ]), u[af + bg] = a(u[f ]) + b(u[g]).

• Directional derivatives along coordinate basis vectors reduce to partial deriva-
tives

ε1[f ] =
∂f̂

∂x1
, ε2[f ] =

∂f̂

∂x2

• Vector fields are smooth maps V : M → R
3.

• We can extend the definition of directional derivative to vector fields. The di-
rectional derivative of a vector field V along a tangent vector field U is denoted
∇UV .
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7 Curvature of an oriented surface

7.1 The shape operator on an oriented surface

Definition 99 An orientation on a RPS M : U → R
3 is a choice of unit normal

vector field N , i.e. a smooth assigment of a unit vector in NyM to each y ∈ M . Only
two orientations are possible (if M is connected). We can choose N to be

N =
ε1 × ε2

|ε1 × ε2|
or we can choose it to be

Ñ = − ε1 × ε2

|ε1 × ε2|
=

ε2 × ε1

|ε2 × ε1|
.

We call the first of these the canonical orientation on M . Unless otherwise stated,
we will always use this orientation rather than Ñ . Note that this convention depends
on the ordering of the coordinates x1, x2. �

The key point about oriented surfaces is that the unit normal at y, N(y), determines
the tangent space at y:

TyM = {v ∈ R
3 : v · N(y) = 0},

by Lemma 81. So we can glean information about how the tangent space varies with y
by computing directional derivatives ∇uN where u ∈ TyM . Just as with the curvature
of a regularly parametrized curve, it’s essential that N is a unit normal vector field
– if it weren’t then ∇uN would contain information about the rate of change of the
length of N in the direction u, as well as the rate of change of the direction of N .

Lemma 100 Let M : U → R
3 be a surface oriented by N , and u ∈ TyM . Then

∇uN ∈ TyM also.

Proof: It suffices to show that N(y) · (∇uN) = 0. Now N is a unit vector field so
N · N = 1. Taking the directional derivative of this (constant) function with respect
to u gives

0 = u[N · N ] = (∇uN) · N(y) + N(y) · (∇uN) = 2N(y) · (∇uN),

where we have used Lemma 95 part (d). The result immediately follows. �

Reminder 101 A map L : V → V , where V is a vector space, is said to be linear
if for all a, b ∈ R and u, v ∈ V ,

L(au + bv) = aL(u) + bL(v).

In this case we usually write Lu instead of L(u). �

Definition 102 Let M : U → R
3 be a surface oriented by N . The shape operator

at y ∈ M is the map

Sy : TyM → TyM, Sy : u 7→ −∇uN.

Sy really does map TyM to itself, by Lemma 100, and is a linear map by Lemma 95.
It is often called the Weingarten map in honour of its discoverer. �
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Example 103 (unit sphere) Recall that for the unit sphere in R
3 with its “polar

coordinate” parametrization, one has the directional derivatives

∇εθ
N = εθ, ∇εφ

N = εφ,

(see Example 97). Any tangent vector u = aεθ + bεφ. Hence

Syu = Sy(aεθ + bεφ) = aSyεθ + bSyεφ

= −a∇εθ
N − b∇εφ

N = −aεθ − bεφ = −u.

So the shape operator on the unit sphere is Sy = −Id, that is, minus the identity
map on TyM . �

Example 104 (a plane) Let M : R
2 → R

3 such that M(x1, x2) = (x1, x2, 0). This
is a surface. We may orient it by N(x) = e3 = (0, 0, 1). This is a constant vector
field, so for all u ∈ TyM , ∇uN = 0. Hence the shape operator on a plane is Sy = 0
(the trivial linear map which maps every u ∈ TyM to the zero vector). �

Example 105 (a cylinder) Let M : (0, 2π) × R → R
3 such that M(x1, x2) =

(x2, c cos x1, c sinx1). This is a cylinder of radius c > 0, symmetric about the y1-
axis.

ε1 = ε2 =

ε1 × ε2 =

N =

Syε1 = −∇ε1
N = −∂N

∂x1
=

Syε2 = −∇ε2
N = −∂N

∂x2
=

From this, we can construct a 2 × 2 matrix representing the linear map Sy relative
to the basis ε1, ε2 for TyM : we identify any vector v = aε1 + bε2 with the column

2-vector

[
a
b

]
. Then

Sy(aε1+bε2) = aSyε1+bSyε2 =

so the matrix representing this linear map with respect to the basis {ε1, ε2} is

Ŝy =







 .
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More briefly, Ŝy is the matrix whose columns are Syε1 and Syε2, thought of as 2-
vectors relative to {ε1, ε2}. �

Our measure(s) of the curvature of a surface will be defined in terms of the eigenvalues
of the linear map Sy : TyM → TyM . It turns out to be crucial that Sy has a property
called self-adjointness.

Definition 106 A linear map L : TyM → TyM is self adjoint if for all u, v ∈ TyM ,
u · Lv = v · Lu. �

Theorem 107 Let M be an oriented surface and Sy : TyM → TyM be its shape
operator at the point y. Then Sy is self adjoint.

Proof: Since {ε1, ε2} spans TyM , it suffices to show that for all i, j,

εi · Syεj = εj · Syεi.

To see this, note that

εi · Syεj − εj · Syεi = −εi · ∇εj
N + εj · ∇εi

N

= −εj[εi · N ] + (∇εj
εi) · N + εi[εj · N ] − (∇εi

εj) (Lemma 95(d))

= −εj[0] + εi[0] + (∇εj
εi −∇εi

εj) = 0 (Lemma 98) �

Example 108 (a saddle surface) Let M : R
2 → R

3 such that M(x1, x2) = (x1, x2, x1x2).
This is a RPS, as we have shown previously. Let’s construct its shape operator
Sy : TyM → TyM at the point y = M(1, 0) = (1, 0, 0).

ε1 = ε2 =

ε1 × ε2 =

N =

Syε1 = −∇ε1
N = − ∂N

∂x1

∣∣∣∣
(1,0)

= − d

dt

∣∣∣∣
t=1

N(t, 0) = − d

dt

∣∣∣∣
t=1

(0,−t, 1)√
1 + t2

=
1

2
3

2

(0, 1, 1) =
1

2
3

2

ε2.

Syε2 = −∇ε2
N = − ∂N

∂x2

∣∣∣∣
(1,0)

= − d

dt

∣∣∣∣
t=0

N(1, t) = − d

dt

∣∣∣∣
t=0

(−t, 1, 1)√
2 + t2

= − 1√
2
(−1, 0, 0) =

1√
2
ε1

Ŝy =




↑ ↑
Syε1 Syε2

↓ ↓


 =





 .
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Let’s check that Sy is self adjoint: at y = M(1, 0),

|ε1|2 = , |ε2|2 = .

Hence

ε1 · Syε2 =

ε2 · Syε1 =

�

7.2 The principal curvatures of an oriented surface

Let V be a vector space (e.g. V = TyM) and L : V → V be a linear map (e.g.
Sy : TyM → TyM). An eigenvalue of L is a number λ such that

Lu = λu (♦)

for some u ∈ V , u 6= 0. The vector u is called an eigenvector corresponding to the
eigenvalue λ. Clearly, given one such u any multiple au (a 6= 0) is also an eigenvector,
so we are free to choose our eigenvectors to have unit length. Let Id : V → V be the
identity map on V (Id u = u). Then we may re-arrange (♦) to read

(L − λ Id)u = 0, u 6= 0,

so λ is an eigenvalue if and only if the linear map L − λ Id fails to be one-to-one
(both u 6= 0 and 0 get mapped to 0 by L−λ Id), that is, if and only if L− λ Id is not

invertible. Choose a basis e1, . . . , em for V and let L̂ be the m×m matrix representing
L. Now Id is represented by the m×m identity matrix Im, so the linear map L−λId

is represented by the square matrix L̂ − λIm. Hence, it fails to be invertible if and
only if

det(L̂ − λIm) = 0. (♣)

Equation (♣) is a degree m polynomial equation in λ, called the characteristic
equation of the linear map L. Although it looks like it depends on the matrix

L̂ chosen to represent L (i.e. the choice of basis for V ), in fact it doesn’t. The
equation has exactly m solutions, counted with multiplicity. However, even though
the coefficients of the polynomial are all real, these solutions may, in general, be
complex. In this case, the solution λ is still called an eigenvalue of L, but its
interpretation is rather subtle.

Example 109 On R
2 consider the linear map L : (a, b) 7→ (−b, a). Relative to the

standard basis e1 = (1, 0), e2 = (0, 1) this has matrix representation

L̂ =

[
0 −1
1 0

]
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so the characteristic equation is
∣∣∣∣
−λ −1
1 −λ

∣∣∣∣ = λ2 + 1 = 0.

So L has only complex eigenvalues, namely ±i. �

Luckily, this can never happen for the shape operator Sy : TyM → TyM because it is
self-adjoint.

Theorem 110 Let L : TyM → TyM be a self-adjoint linear map. Then

(A) its eigenvalues are all real, and

(B) its eigenvectors form an orthonormal basis for TyM .

Proof: (A) Let e1, e2 be an orthonormal basis for TyM and

L̂ =

[
L11 L12

L21 L22

]

be the matrix representing L relative to this basis. Then, by definition,

e1 · (Le2) = e1 · (L12e1 + L22e2) = L12,

and
e2 · (Le1) = e2 · (L11e1 + L21e2) = L21.

But L is self adjoint, so L12 = L21 (that is, the matrix L̂ is symmetric). Hence, the
characteristic equation of L is

0 = det(L̂− λI2) =

∣∣∣∣
L11 − λ L12

L12 L22 − λ

∣∣∣∣ = λ2 − (L11 + L22)λ + L11L22 −L2
12. (♠)

The discriminant of this quadratic polynomial is

“b2 − 4ac” = (L11 + L22)
2 − 4L11L22 + 4L2

12 = (L11 − L22)
2 + 4L2

12 ≥ 0.

Hence (♠) has two real solutions.
(B) Let these real eigenvalues be λ1, λ2 and denote their corresponding eigenvectors
u1, u2. If λ1 = λ2, equation (♠) has a repeated root, hence its discriminant vanishes,

so L11 = L22 = λ and L12 = 0. But then L̂ = λI2 ⇒ L = λ Id, so every vector
u ∈ TyM is an eigenvector corresponding to eigenvalue λ. So we may choose u1 = e1

and u2 = e2, which are orthonormal.
If λ1 6= λ2 then

0 = u1 · Lu2 − u2 · Lu1 = (λ2 − λ1)u1 · u2

so u1 · u2 = 0. �

This allows us to make the following definition:
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Definition 111 Let M : U → R
3 be an oriented surface, Sy : TyM → TyM be its

shape operator. Then the principal curvatures of M at y are κ1, κ2, the eigenvalues
of Sy. The principal curvature directions of M at y are the corresponding (nor-
malized) eigenvectors u1, u2. By Theorem 110, κ1, κ2 are real and the eigenvectors
u1, u2 form an orthonormal basis for TyM . �

Example 112 (saddle surface) Recall (Example 108) that the saddle surface

M(x1, x2) = (x1, x2, x1x2)

at y = M(1, 0) = (1, 0, 0) has shape operator

Ŝy =

[
0 2−

1

2

2−
3

2 0

]

relative to the coordinate basis ε1 = (1, 0, 0), ε2 = (0, 1, 1) for T(1,0,0)M . Note this
matrix is not symmetric, because the coordinate basis is not orthonormal. Nonethe-
less, its eigenvalues must still be real, and its eigenvectors orthonormal. Let’s check.
The characteristic equation is

0 =

∣∣∣∣
−λ 2−

1

2

2−
3

2 −λ

∣∣∣∣ =

so the principal curvatures are:

κ1 = , κ2 = .

To find u1, solve the linear system Ŝyu1 = κ1u1:

We won’t worry about the length of u1 yet. Similarly for u2:

Are these vectors orthogonal? They certainly don’t look orthogonal. But you must
remember that these 2 × 1 column matrices represent u1 and u2 with respect to
the basis ε1, ε2. The vectors u1, u2 themselves lie in TyM ⊂ R

3, that is, they are
3-dimensional vectors. In fact,

u1 =

u2 =
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whence we see that u1 · u2 = 0 as required. Note that when we normalize them to
have unit length, we must again think of them as vectors in R

3, not 2 × 1 column
matrices:

�

Example 113 (unit sphere) Recall (Example 103) that the unit sphere

M(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ)

has a very simple shape operator, namely Sy = −Id. It follows that every vector
u ∈ TyM is an eigenvector with eigenvalue −1. Since εθ, εφ are orthogonal, and
|εθ| = 1, we may choose as our principal curvature directions

u1 = εθ = (cos θ cos φ, cos θ sin φ,− sin θ), u2 =
εφ

|εφ|
= (− sin φ, cosφ, 0).

Note that u1 · u2 = 0 as it should. �

Example 114 (a cylinder) Recall (Example 105) that the cylinder of radius c,
M(x1, x2) = (x2, c cos x1, c sin x1), has shape operator

Ŝy =

[
−1

c
0

0 0

]

relative to the coordinate basis ε1 = (0,−c sin x1, c cos x1), ε2 = (1, 0, 0). So its char-
acteristic equation is ∣∣∣∣

−1
c
− λ 0
0 −λ

∣∣∣∣ = λ(λ +
1

c
) = 0.

It follows that the principal curvatures are κ1 = −1/c and κ2 = 0. What are the
corresponding principal curvature directions?

Ŝyu1 = −u1/c ⇒ Ŝyu2 = 0 ⇒

Hence, after normalizing, u1 = ε1/c and u2 = ε2. Orthogonal? Yes.
Note that if we make the cylinder smaller (reduce c) then |κ1| gets larger. This makes
intuitive sense: a tightly rolled cylinder should be more highly curved than a loosely
rolled one. �
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7.3 Normal curvature

Definition 115 Let M : U → R
3 be a regularly parametrized surface. The unit

tangent space at y ∈ M is

UyM = {v ∈ TyM : |v| = 1},

the set of unit vectors in TyM . Geometrically, we can think of UyM as the unit circle
in TyM . �

Note that UyM is not a vector space.

Definition 116 Let M be an oriented surface. The normal curvature function
of M at y ∈ M is

ky : UyM → R, ky(u) = u · Syu

where Sy denotes the shape operator as usual. �

Why call this “normal curvature”?

Lemma 117 Let M be a surface oriented by N and u ∈ UyM . Let α : I → M be any
unit speed curve in M through y generating u. Then the component of the curvature
vector of α in the direction of N(y) is ky(u).

Proof: We have a curve in M with α(0) = y, α′(0) = u. Since α is a unit speed curve,
its curvature vector at y is k(0) = α′′(0). Now α stays in M , so its velocity is always
tangent to M , and hence

α′(t) · N(α(t)) = 0 (♣)

for all t ∈ I. Differentiate (♣) with respect to t and set t = 0:

α′′(0) · N(α(0)) + α′(0) · (N ◦ α)′(0) = 0

⇒ k(0) · N(y) + u · (N ◦ α)′(0) = 0.

But (N ◦ α)′(0) = ∇uN by the definition of directional derivatives (Definition 94).
Hence

k(0) · N(y) = −u · ∇uN = u · Syu = ky(u)

as was to be proved. �

Example 118 (hyperboloid of one sheet) The hyperboloid

H = {y ∈ R
3 : y2

1 + y2
2 − y2

3 = 1}

may be parametrized by

M : (−π, π) × R → R
3

M(θ, z) = (
√

1 + z2 cos θ,
√

1 + z2 sin θ, z).
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The coordinate basis is

εθ = (−
√

1 + z2 sin θ,
√

1 + z2 cos θ, 0)

εz = (
z√

1 + z2
cos θ,

z√
1 + z2

sin θ, 1)





⇒ N(θ, z) =
(
√

1 + z2 cos θ,
√

1 + z2 sin θ,−z)√
1 + 2z2

.

At y = (1, 0, 0) = M(0, 0), εθ = (0, 1, 0) and εz = (0, 0, 1) happen to be in UyM
(they’re unit vectors). What are ky(εθ) and ky(εz)?

Syεθ = −∇εθ
N = − ∂N

∂θ

∣∣∣∣
(0,0)

= −(0, 1, 0) = −εθ

⇒ ky(εθ) = εθ · (−εθ) = −1

Syεz = −∇εz
N = − ∂N

∂z

∣∣∣∣
(0,0)

= −(0, 0,−1) = εz

⇒ ky(εz) = εz · εz = 1.

The sign of the normal curvature ky(u) tells us whether the surface is curving
towards its unit normal (ky(u) > 0) or away from its unit normal (ky(u) < 0) as we
move in the direction u. Note that this depends on the choice of orientation N . �

Example 119 (cylinder) Consider the cylinder C = {y ∈ R
3 : y2

1 + y2
3 = 1}.

y = (1, 0, 0) ∈ C and u1 = (0, 1, 0), u2 = (0, 0, 1) are both unit tangent vectors at y.
Can we figure out the sign of ky(u1) and ky(u2) without any calculations at all? No!
Not until we choose an orientation on C:

N = outward pointing unit normal N = inward pointing unit normal

. �
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Normal curvature allows us to give a new interpretation of the principal curvatures
of a surface.

Theorem 120 Let M : U → R
3 be an oriented surface and κ1, κ2 be its principal

curvatures at y ∈ M , ordered so that κ1 ≤ κ2. Then

κ1 = min{ky(u) : u ∈ UyM}
κ2 = max{ky(u) : u ∈ UyM}.

Proof: Let u1, u2 be the orthonormal pair of eigenvectors corresponding to κ1, κ2 (see
Theorem 110). These span TyM so any unit vector u ∈ UyM may be written

u = cos θ u1 + sin θ u2

for some angle θ. The normal curvature of u is

ky(u) = (cos θ u1 + sin θ u2) · Sy(cos θ u1 + sin θ u2)

= κ1 cos2 θ + κ2 sin2 θ (♠)

= κ2 − (κ2 − κ1)α,

where α = cos2 θ ∈ [0, 1]. Clearly, this function attains its maximum at α = 0 and its
minimum at α = 1 (recall κ2 − κ1 ≥ 0), and these values are κ2 and κ1 respectively.
�

Example 121 (hyperboloid of one sheet) For M and y as in Example 118, con-
struct unit vectors with the following properties:

(a) ky(u) = 0, (b) ky(u) = 2, (c) Syu = 0.

(a) Recall that Syεθ = −εθ and Syεz = εz, so the principal curvatures are κ1 = −1,
κ2 = 1, and the principal curvature directions are u1 = εθ, u2 = εz (N.B.: these
already have unit length). We seek a unit vector u = cos θ u1 +sin θ u2 such that
ky(u) = 0. But then by (♠),

0 = ky(u) = κ1 cos2 θ + κ2 sin2 θ = − cos2 θ + sin2 θ

⇒ cos2 θ = sin2 θ

which has 4 solutions, cos θ = ± 1√
2
, sin θ = ± cos θ. So any one of the 4 unit

vectors

u =
1√
2
(εθ + εz), u =

1√
2
(εθ − εz), u =

1√
2
(−εθ + εz), u =

1√
2
(−εθ − εz)

solves the problem. Substituting in the explicit basis vectors εθ, εz:

u =
1√
2
(0, 1, 1), u =

1√
2
(0, 1,−1), u =

1√
2
(0,−1, 1), u =

1√
2
(0,−1,−1).

(b) No such u can exist by Theorem 120. For all u ∈ UyM , −1 ≤ ky(u) ≤ 1.

(c) Again, no such u can exist. If it did, then since u 6= 0, it follows that 0 is an
eigenvalue of Sy, and hence a principle curvature. But the principal curvatures
are just ±1, not 0. �
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7.4 Mean and Gauss curvatures

Definition 122 The mean curvature of M at y ∈ M is

H(y) =
1

2
(κ1 + κ2)

where κ1, κ2 are the principal curvatures of M at y. The Gauss curvature of M at
y is

σ(y) = κ1κ2 �

One need not solve the eigenvalue problem for Sy to compute H(y) and σ(y):

Proposition 123 For all y ∈ M ,

H(y) =
1

2
tr Ŝy, σ(y) = det Ŝy,

where Ŝy is the matrix representing Sy : TyM → TyM relative to some choice of basis
for TyM .

[Recall that the trace of a square matrix L is the sum of its diagonal elements.]

Proof: Let Ŝy =

[
S11 S12

S21 S22

]
relative to our chosen basis. Then κ1, κ2 are roots of

the polynomial

p(λ) =

∣∣∣∣
S11 − λ S12

S21 S22 − λ

∣∣∣∣ = λ2−(S11+S22)λ+(S11S22−S12S22) = λ2−tr Ŝy λ+det Ŝy. (♣)

But p(κ1) = p(κ2) = 0 and the coefficient of λ2 is unity, so

p(λ) = (λ − κ1)(λ − κ2) = λ2 − (κ1 + κ2)λ + κ1κ2. (♠)

Comparing coefficients of λ and unity in (♠) and (♣), we see that κ1 + κ2 = tr Ŝy

while κ1κ2 = det Ŝy. �

Example 124 (a) The unit sphere has shape operator Sy : v 7→ −v at every point y
(see Example 103). Hence, relative to any basis for TyM ,

Ŝy =

[
−1 0
0 −1

]
.

It follows that

H(y) =
1

2
(−1 + −1) = −1

σ(y) = (−1)(−1) = 1

for all y ∈ M .
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(b) The saddle surface M(x1, x2) = (x1, x2, x1x2) at y = (0, 1, 0) = M(0, 1) has shape
operator

Syε1 =
1√
2
ε2

Syε2 =
1

2
√

2
ε1





see Example 108.

Hence: Ŝy =

[
0 1

2
√

2
1√
2

0

]
⇒

H(y) = 0

σ(y) = −1

4
at this particular point. �

Two more ways of interpreting mean curvature H(y):

Proposition 125 H(y) is the average value of the normal curvature ky : UyM → R,
thought of as a function on the unit circle in TyM .

Proof: Let κ1, κ2 be the principal curvatures, u1, u2 be the associated orthonormal
principal curvature directions. Then for any u ∈ UyM there exists θ such that
u = u1 cos θ + u2 sin θ. The normal curvature of u is

ky(u) = κ1 cos2 θ + κ2 sin2 θ.

Hence, the average value of ky as θ varies over [0, 2π] is

〈ky(u(θ))〉 =
1

2π

∫ 2π

0

(κ1 cos2 θ + κ2 sin2 θ) dθ

=
1

2π

∫ 2π

0

[
κ1

2
(1 + cos 2θ) +

κ2

2
(1 − cos 2θ)] dθ =

1

2
(κ1 + κ2). �

Clearly ky(u1) = κ1, ky(u2) = κ2, so H(y) = 1
2
(ky(u1) + ky(u2)). In fact we have the

following:

Proposition 126 Let v1, v2 be any orthogonal pair of unit vectors in TyM . Then

H = 1
2
(ky(v1) + ky(v2)).

Proof: Using the orthonormal basis of principal curvature directions u1, u2 again, there
must exist θ such that v1 = u1 cos θ + u2 sin θ. Consider the vector v̄ = −u1 sin θ +
u2 cos θ. Clearly v̄ · v1 = 0 and |v̄|2 = 1, so either v2 = v̄ or v2 = −v̄. For any vector
u ∈ UyM , ky(−u) = (−u) ·Sy(−u) = u ·Sy u = ky(u), so in either case ky(v2) = ky(v̄).
Hence

ky(v1) + ky(v2) = (u1 cos θ + u2 sin θ) · (cos θ Sy u1 + sin θ Sy u2) +

(−u1 sin θ + u2 cos θ) · (− sin θ Sy u1 + cos θ Sy u2)

= (u1 cos θ + u2 sin θ) · (κ1u1 cos θ + κ2u2 sin θ) +

(−u1 sin θ + u2 cos θ) · (−κ1u1 sin θ + κ2u2 cos θ)

= κ1 cos2 θ + κ2 sin2 θ + κ1 sin2 θ + κ2 cos2 θ = κ1 + κ2.

Hence H(y) = (κ1 + κ2)/2 = (ky(v1) + ky(v2))/2. �
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Example 127 Let M = a cone, outwardly oriented. What can we deduce about σ
and H just by looking at the surface?

N
u

kv

N

v

Pick orthonormal pair u, v at any point
y ∈ M . Then N is constant along
the straight line in M generating u ⇒
∇uN = 0 ⇒ Sy u = 0. Hence at
least one principal curvature κ2 = 0 ⇒
σ(y) = 0. It follows that ky(u) = u·Sy u =
0.

But ky(v) = k · N < 0 since the circle
generating v curves away from the out-
ward unit normal. Hence, by Proposition
126, H(y) < 0. �

Fact 128 If we change orientation N 7→ Ñ = −N then Sy 7→ S̃y = −Sy ⇒ κi 7→
κ̃i = −κi ⇒ H 7→ H̃ = −H but σ 7→ σ̃ = σ. The only measure of curvature
we’ve introduced so far which is independent of the choice of orientation on M is the
Gauss curvature. For all other types of curvature (including normal curvature), the
sign of the curvature has no intrinsic meaning (i.e. no meaning independent of our
more or less arbitrary choice of orientation).

The sign of σ does have an intrinsic geometric meaning!

σ(y) > 0 ⇒ κ1, κ2 have same sign
⇒ ky(u) strictly positive (if κ1, κ2 > 0) or

ky(u) strictly negative (if κ1, κ2 < 0)
⇒ all curves through y curve towards N(y) or

all curves through y curve away from N(y)
⇒ all curves curve in the same “sense”.

N all away from N
k  <  0y

all towards N
k  > 0y

N

σ(y) < 0 ⇒ κ1, κ2 differ in sign
⇒ ky(u) takes both positive and negative values
⇒ ∃ curves through y which curve in opposite senses.

N

N
towards

awaytowards

away
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Example 129 Let’s test our intuition on the following surfaces:

(a) (b)

(c) (d)

(e) (f)
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Summary

• An oriented surface is a RPS together with a choice of unit normal vector field
N . Usually we choose

N =
ε1 × ε2

|ε1 × ε2|
.

• The shape operator of an oriented surface is

Sy : TyM → TyM, Sy(v) = −∇vN.

The shape operator is linear,

Sy(au + bv) = aSy(u) + bSy(v),

and self adjoint,
u · Sy(v) = v · Sy(u).

• The principal curvatures of M at y are the eigenvalues κ1, κ2 of Sy. The prin-
cipal curvature directions are the corresponding (normalized) eigenvectors.

• The normal curvature of a unit vector u ∈ TyM is

ky(u) = u · Sy(u).

This coincides with k(0) · N(y) where k(t) is the curvature vector of any gen-
erating curve for u. The principle curvatures are the maximum and minimum
values of Sy(u) as u takes all values in the unit tangent space at y.

• The mean curvature at y is

H =
1

2
(κ1 + κ2).

This coincides with 1
2
(ky(v1)+ ky(v2)) where v1, v2 is any orthogonal pair of unit

vectors in TyM .

• The Gauss curvature at y is

σ = κ1κ2.

The sign of σ has intrinsic meaning, independent of the choice of N : if σ(y) > 0
then either all curves in M through y curve towards N(y), or they all curve away
from N(y); if σ(y) < 0 then some curves curve towards N(y) and some curve
away.

• Both H and σ can be computed directly from any matrix Ŝy representing Sy:

H =
1

2
tr Ŝy, σ = det Ŝy.
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Homework Deadlines MATH2051, 2011/2012

(i) Friday 14 October 2011

(ii) Friday 28 October 2011

(iii) Friday 11 November 2011

(iv) Friday 25 November 2011

(v) Friday 9 December 2011
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University of Leeds, School of Mathematics

MATH 2051 Geometry of Curves and Surfaces.
Exercises 1: Regularly Parametrized Curves

Submit on Friday 14 October 2011

1. Determine which of the following are regularly parametrized curves, carefully explaining your
reasoning:

(a) γ : R → R
3, γ(t) = (t2, t3, sin t) (b) γ : (0,∞) → R

4, γ(t) = (
√
t, et, t2, 3)

(c) γ : R → R
2, γ(t) = (cos t,

∫ t
0
er

2

dr) (d) γ : R → R
2, γ(t) = (t+ cos t, sin t).

2. Let γ : R → R
2 such that γ(t) = (t3, t2 − t).

(a) Show that γ is a regularly parametrized curve.

(b) Construct its tangent line at time t = −1, γ̂−1 : R → R
2.

(c) Find all intersection points between γ and γ̂−1.

3. (a) Let γ : R → R
3 such that γ(t) = (t, cos t, sin t) (a vertical helix). Calculate the arc length

along γ from t = 0 to t = 2π.

(b) Let γ : (0, 2π) → R
2 such that γ(t) = (t+ sin t, 1− cos t) (this is the trajectory described

by a point on the rim of a wheel of unit radius rolling through one revolution without
slipping). Calculate the total length of this curve.

(c) Let γ(t) = (t + 2 cos t, 2 sin t) and δ(t) = (4t + 2 cos t, 2 sin t). Given that the arc length
along γ from t = 0 to t = 2π is 13.36 to 2 decimal places, calculate the arc length along
δ from t = 0 to t = 2π. To how many decimal places is your answer accurate?

(d) Let γ(t) = (t, 1
2 t

2). Compute σ0(t), the arc length function for γ based at t0 = 0.
[Hint: you’ll need a clever substitution in the integral. Try hyperbolic trig functions.]

4. Let γ : R → R
2 such that γ(t) = et(cos t, sin t).

(a) Construct the signed arc length function σ0 : R → J and its inverse function τ0 : J → R.

(b) Hence find a unit speed reparametrization β : J → R
2 of γ. Clearly state the domain J

of β.

5. The trajectory γ : R → R
3 of an electrically charged particle (for example, an electron) moving

in a uniform magnetic field satisfies the differential equation

γ′′(t) = B × γ′(t)

where B = (B1, B2, B3) is a constant 3-vector describing the magnetic field, and × denotes
the vector product.

(a) Show that the particle travels at constant speed.

(b) Show that the component of the particle’s velocity in the direction of the magnetic field
B is also constant.

(c) Without loss of generality, we can choose our Cartesian coordinate system so that B =
(0, 0, B3), γ(0) = (0, 0, 0) and γ′(0) = (v1, 0, v3). From the previous parts, it follows that
|γ′(t)| = |v|, and γ′3(t) = v3 for all time, so

γ′(t) = (v1 cosψ(t), v1 sinψ(t), v3)

where ψ : R → R is some unknown function. Show that ψ′(t) = B3. Hence compute the
trajectory γ(t) with these initial data. Describe the motion of the particle.
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1. For each of the following RPCs γ : R → R
n, compute the curvature vector k : R → R

n:

(a) γ(t) = (t, t3),

(b) γ(t) = (sin t, 2t, 2t, cos t),

(c) γ(t) = (e(t
2),

∫ t

0

e(α
2)dα),

(d) γ(t) = (t− cos t, sin t, t).

2. (a) Given that f : (0,∞) → R is smooth, show that γ : (0,∞) → R
3, γ(t) = (t2, log t,

∫ t
0 f(α)dα)

is a RPC.

(b) Given the extra information that f(1) = 1 and f ′(1) = −1, calculate k(1), the curvature
vector of γ at t = 1.

3. For each of the following planar RPCs γ : R → R
2, compute the signed curvature κ : R → R

and find all the inflexion points.

(a) γ(t) = (t, t3),

(b) γ(t) = (t, t+ sin t),

(c) γ(t) = (e(t
2),

∫ t

0

e(α
2)dα),

[Hint: for (a), (c) you can use your answer to question 1!]
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4. Given a prescribed function κ : I → R, there exists a unique unit speed curve γ : I → R
2 with

γ(0) = (0, 0), γ′(0) = (1, 0) and signed curvature κ. The curves corresponding to the signed
curvature functions (I = R in all cases)

κ1(s) = s4 − 5s2 + 4, κ2(s) = 4(s3 + s), κ3(s) = e(s
2),

κ4(s) = e−(s2), κ5(s) = 4(s3 − s),

are depicted below in the wrong order, figures (A) to (E). Determine which curve corresponds
to which signed curvature. In each case, briefly explain your reasoning. (Unexplained answers
will not receive full credit.)

(A) (B)

-1

-0.5

0

0.5

1

-2 -1 0 1 2 0

0.5

1

1.5

2

-2 -1 0 1 2

(C) (D)

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

(E)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

[This question is taken verbatim from a past final exam. I like this type of question very
much...]

5. Find the centre of curvature of the curve γ(t) = (t2 − t, et) at t = 0.

6. Let γ(t) = (t, cosh t). Compute κ(t), the signed curvature of γ, and Eγ(t), the evolute of γ.
Sketch the curves γ and Eγ . Is Eγ a RPC?
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1. Given that γ : R → R
3 has γ′(0) = 1√

2
(1, 1, 0) and γ′′(0) = (1, 0, 1) construct [u(0), n(0), b(0)],

the Frenet frame for γ at time t = 0. Is it possible to tell from the given information whether
γ is a USC?

2. Let γ : R → R
3 such that γ(s) = 1√

5
(2 sin s, 2 cos s, s). Show that γ is a USC of nonvanishing

curvature. Construct its Frenet frame [u(s), n(s), b(s)] and determine its torsion τ(s).

3. A curve γ : I → R
3 is spherical if its image γ(I) lies entirely on the surface of some sphere

S ⊂ R
3; that is, if there exist constants p ∈ R

3 and r ∈ (0,∞) such that for all s ∈ I,
|γ(s) − p| = r.
The sphere S in question is then centred at p and has radius r.

Let γ : I → R
3 be a spherical unit speed curve. Prove that

(a) γ has nonvanishing curvature and hence a well defined Frenet frame and torsion τ .

(b) If τ(s) 6= 0 for all s ∈ I then
1

κ(s)2
+

(
κ′(s)

τ(s)κ(s)2

)2

= r2 (♣)

a constant (in fact, r is the radius of the sphere containing γ).

Does the converse of this “theorem” hold: if γ : I → R
3 is a unit speed curve of nonvanishing

curvature whose curvature and torsion satisfy equation (♣), does it follow that γ is a spherical
curve? [Hint: look at question 2.]
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4. For each of the curves depicted below, determine whether the curve’s evolute is:
(i) not globally defined, (ii) globally defined but not regular, (iii) regular.

(A) (B) (C)

-1.5

-1

-0.5

0

0.5

1

1.5

-1 0 1 2 3 4 5

x

0

0.5

1

1.5

2

-2 -1 0 1 2 -2

-1

0

1

2

0 2 4 6 8 10

x

(D) (E)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 -1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5

One and only one of these curves has no regular parallel curves (except for itself). Which one?

5. Let γ : I → R
2 such that γ(t) = (t, cosh t). Construct Iγ : R → R

2, the involute of γ starting
at t = 0.

6. Determine whether each of the following mapsM : U → R
3 is a regularly parametrized surface.

(a) M : R
2 → R

3, M(x1, x2) = (x1, x1x2, e
x1+x2)

(b) M : R
2 → R

3, M(x1, x2) = (x2 cosx1, x1x
2
2, x1 coshx2)

(c) M : R × (0, 2π) → R
3, M(z, ψ) = (cosh z cosψ, cosh z sinψ, sinh z).

7. Verify that the image set of M as defined in question 6c is contained in the hyperboloid of one
sheet:

H = {y ∈ R
3 : y2

1 + y2
2 − y2

3 = 1}.
Is the image set all of H? If not, what subset of H is missing? Find local coordinates (z, ψ)
for the point (1, 1, 1) ∈ H .
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1. Given a point y ∈ R
3, find expressions for the distance from y to (0, 0, 1) and the distance

from y to the plane y3 = 0. Let P ⊂ R
3 be the set of points which are equidistant from the

plane y3 = 0 and the point (0, 0, 1). Find a RPS whose image set is precisely P .

2. Let γ : R → R
3 be a unit speed curve of nonvanishing curvature, and consider the map

M : R × (0,∞) → R
3 defined by

M(s, t) = γ(s) + tγ′(s).

Show that M is regular. In the case that γ is the helix

γ(s) =
1√
2
(cos s, sin s, s)

show that M is a RPS. [Hint: you need to show thatM is one-to-one, that is, M(s, t) = M(s̄, t̄)
implies (s, t) = (s̄, t̄). Now M(s, t) = M(s̄, t̄) implies M3(s, t) = M3(s̄, t̄) and |M(s, t)|2 =
|M(s̄, t̄)|2. This gives a pair of (polynomial) equations for s, t, s̄, t̄, which you should be able
to show are solved only if t = t̄ and s = s̄.]

3. Let M : R
2 → R

3 such that M(x1, x2) = (x1 + x2, x1 − x2, x
2
1 − x2

2). Show that M is a
RPS. Find the local coordinates of y = (3, 1, 3) ∈M . Determine whether the following vectors
are tangent, normal or neither at y:

(2, 2,−1), (−1, 3, 8), (−1,−3, 1), (0, 0, 0).

4. With M and y as in question 3, let v = (1, 0, 1). You are given that v ∈ TyM . Express v
in the form aε1 + bε2. Hence compute the directional derivatives v[f ], v[g] and v[fg] where
f, g : M → R are the functions

f(y1, y2, y3) = y1 + y2 + y3, g(y1, y2, y3) = y2
1 + y2

2 + y2
3 .

5. With M as in question 3, let N be the unit normal vector field

N(x1, x2) =
ε1(x1, x2) × ε2(x1, x2)

|ε1(x1, x2) × ε2(x1, x2)|
.

Calculate the vector fields ∇ε1ε1, ∇ε1ε2, ∇ε1N , ∇ε2ε1, ∇ε2ε2, ∇ε2N . Determine which of
these are tangent vector fields, and write those which are in the form a(x)ε1(x) + b(x)ε2(x).
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1. Show that M : R
2 → R

3, M(x1, x2) = (x1, x2,
1
2x

2
2) is a regularly parametrized surface. Sketch

the image set of M . Construct the unit normal vector field N(x1, x2). Compute Syε1 and
Syε2 at a general point y = M(x). Deduce the principal curvatures and principal curvature
directions at a general point.

2. You are given that the tangent space TyM of a certain RPS M is spanned by a pair of vectors
ε1, ε2 and that the shape operator at y satisfies

Syε1 = ε1 − 2ε2, Syε2 = −ε1 + 3ε2.

Deduce the principal curvatures of M at y. If ε1, ε2 are both unit vectors, what is ε1 · ε2?

3. The set H̄ = {y ∈ R
3 | y2

1 + y2
2 − y2

3 = −1} is a hyperboloid of two sheets. You are given that

N(y1, y2, y3) =
(y1, y2,−y3)√
y2
1 + y2

2 + y2
3

is a unit normal vector field on N . Verify that u = (0, 1, 0) is tangent to H̄ at the specific
point ỹ = (1, 0,

√
2) ∈ H̄ . Write down a generator curve α : I → H̄ for the tangent vector

u. Hence compute Sỹu. Deduce one of the principal curvatures of H̄ at ỹ, and both of the
principal curvature directions.

4. A certain oriented surface M has, at a certain point y, principal curvatures κ1 = 0, κ2 = 4 and
principal curvature directions u1 = (1, 0, 0), u2 = (0, 1/

√
2,−1/

√
2). In each of the following

cases, either construct a unit vector u ∈ UyM with the stated property, or explain why no
such u exists.

(a) ky(u) = 0

(b) ky(u) = 1

(c) ky(u) = −1

(d) Syu = u

(e) |Syu| = 2
√

3.

5. Consider the mapping M : R × (−π, π) → R
3 defined by

M(t, θ) = (t, (1 +
t2

2
) cos θ, (1 +

t2

2
) sin θ).

You are given that M is a RPS. Compute its Gauss curvature at the point p = M(0, 0) =
(0, 1, 0).
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6. An oriented surface M : U → R
3 is said to be minimal if its mean curvature H(y) is zero

for all y ∈ M . Show that a minimal surface must have non-positive Gauss curvature, that is
σ(y) ≤ 0 for all y ∈M .

Look at the surfaces depicted below. Two of them are minimal surfaces, while the other 4 are
not. Identify which two are minimal. [Hint: think about the Gauss curvature of the surfaces...]
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